Pregunta
upstudy study bank question image url

If a ball is thrown in the air with an initial height of 4 feet, and if the ball remains in the air for 3.8 seconds, then accurate to the nearest foot, how high did it go? Remember, the acceleration due to gravity on Earth is \( -32 \mathrm{ft} / \mathrm{sec}^{2} \). [?] feet

Ask by Bowman Harrington. in the United States
Mar 12,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The ball reached a maximum height of approximately 60 feet.

Solución

1. Write the equation for vertical motion: \[ y(t) = y_0 + v_0 t - 16t^2, \] where \( y_0 = 4 \) ft, \( v_0 \) is the initial velocity, and the acceleration due to gravity is \( -32 \) ft/sec\(^2\) (hence the term \(-16t^2\) because \( \frac{1}{2}(-32) = -16 \)). 2. Since the ball remains in the air for \( 3.8 \) seconds and lands when \( y(3.8) = 0 \), substitute \( t = 3.8 \) into the equation: \[ 0 = 4 + v_0(3.8) - 16(3.8)^2. \] 3. Compute \( 16(3.8)^2 \): \[ 3.8^2 = 14.44 \quad \text{and} \quad 16 \times 14.44 = 231.04. \] Thus, the equation becomes: \[ 0 = 4 + 3.8\,v_0 - 231.04. \] 4. Solve for \( v_0 \): \[ 3.8\,v_0 = 231.04 - 4 = 227.04, \] \[ v_0 = \frac{227.04}{3.8} \approx 59.74 \, \text{ft/sec}. \] 5. The maximum height is reached when the velocity becomes zero. The velocity at time \( t \) is given by: \[ v(t) = v_0 - 32t. \] Set \( v(t) = 0 \) to find the time to reach the maximum height: \[ 0 = 59.74 - 32t_{\text{max}}, \] \[ t_{\text{max}} = \frac{59.74}{32} \approx 1.867 \, \text{sec}. \] 6. Substitute \( t_{\text{max}} \) into the position equation to find the maximum height: \[ y_{\text{max}} = 4 + 59.74(1.867) - 16(1.867)^2. \] First, calculate: \[ 59.74 \times 1.867 \approx 111.45, \] and \[ 1.867^2 \approx 3.4849 \quad \text{so} \quad 16 \times 3.4849 \approx 55.76. \] Hence, \[ y_{\text{max}} \approx 4 + 111.45 - 55.76 = 59.69 \, \text{ft}. \] 7. Rounding to the nearest foot: \[ y_{\text{max}} \approx 60 \, \text{ft}. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine the maximum height of the ball, we use the kinematic equation for vertical motion: \[ h(t) = h_0 + v_0 t + \frac{1}{2} a t^2 \] where: - \( h(t) \) is the height at time \( t \), - \( h_0 = 4 \) feet (initial height), - \( v_0 \) is the initial velocity, - \( a = -32 \, \text{ft/s}^2\) (acceleration due to gravity). First, we need the initial velocity. Since we don't have it yet, we'll find it by noting that the ball reaches its peak height at half the total time (1.9 seconds) where its velocity will be zero. We can use the equation: \[ v(t) = v_0 + at \] Setting \( v(t) \) to zero, we get: \[ 0 = v_0 - 32 \times 1.9\] Solving for \( v_0 \): \[ v_0 = 32 \times 1.9 \approx 60.8 \, \text{ft/s} \] Now to find the maximum height, we plug in \( t = 1.9 \) seconds into the height equation: \[ h(1.9) = 4 + 60.8 \times 1.9 + \frac{1}{2} \times (-32) \times (1.9)^2 \] Calculating this: 1. \( 60.8 \times 1.9 \approx 115.52 \) 2. \( \frac{1}{2} \times (-32) \times (3.61) = -57.76 \) Now combine: \[ h(1.9) \approx 4 + 115.52 - 57.76 \approx 61.76 \, \text{feet} \] Rounded to the nearest foot, the maximum height the ball reached is **62 feet**.

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad