Solve. How many hours will it take Wendy to make \( 4 \frac{2}{3} \) batches of cookies if she can make \( 1 \frac{1}{3} \) batches in 1 hour?
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To solve this, we start by converting the mixed numbers into improper fractions. Wendy makes \( 1 \frac{1}{3} = \frac{4}{3} \) batches in 1 hour. We need to find out how many hours it takes her to make \( 4 \frac{2}{3} \) batches, which can be converted to \( 4 \frac{2}{3} = \frac{14}{3} \) batches. Now, we can set up the equation to find out the time (in hours) it takes: \[ \text{Hours} = \frac{\text{Total Batches}}{\text{Batches per Hour}} = \frac{\frac{14}{3}}{\frac{4}{3}}. \] When dividing fractions, we multiply by the reciprocal: \[ \frac{\frac{14}{3}}{\frac{4}{3}} = \frac{14}{3} \times \frac{3}{4} = \frac{14 \times 3}{3 \times 4} = \frac{14}{4} = \frac{7}{2}. \] This simplifies to \( 3 \frac{1}{2} \) hours. So, it will take Wendy \( 3 \frac{1}{2} \) hours to make \( 4 \frac{2}{3} \) batches of cookies.
