Pregunta
upstudy study bank question image url

3. \( 28 c k \) is standing at the top of a lookout tower and spots a water fountain below. If the lookout tower Is 75 feet tall and the angle of depression is \( 28^{\circ} \), what is the horizontal distance between Zack and the water fountain?

Ask by Mccoy Delgado. in the United States
Jan 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The horizontal distance between Zack and the water fountain is approximately 266.5 feet.

Solución

To find the horizontal distance between Zack and the water fountain, we can use the concept of trigonometry, specifically the tangent function. Given: - Height of the lookout tower = 75 feet - Angle of depression = \(28^{\circ}\) We can use the tangent function to find the horizontal distance. The tangent of an angle in a right triangle is defined as the ratio of the length of the side opposite the angle to the length of the side adjacent to the angle. Let's denote the horizontal distance as \(x\). Using the tangent function, we have: \[ \tan(28^{\circ}) = \frac{75}{x} \] To find the horizontal distance \(x\), we can rearrange the equation to solve for \(x\): \[ x = \frac{75}{\tan(28^{\circ})} \] Now, we can calculate the value of \(x\) using a calculator. The horizontal distance between Zack and the water fountain is approximately 266.5 feet.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the horizontal distance between Zack and the water fountain, you can use trigonometry. Since the angle of depression is \(28^{\circ}\), the corresponding angle of elevation from the fountain to Zack is also \(28^{\circ}\). We'll use the tangent function, which relates the opposite side (the height of the tower) to the adjacent side (the horizontal distance we want to find): \[ \tan(28^{\circ}) = \frac{\text{height}}{\text{horizontal distance}} = \frac{75 \text{ feet}}{d} \] Rearranging gives: \[ d = \frac{75 \text{ feet}}{\tan(28^{\circ})} \] Calculating \( \tan(28^{\circ}) \) (approximately \(0.5317\)) yields: \[ d \approx \frac{75}{0.5317} \approx 141.77 \text{ feet} \] So, the horizontal distance between Zack and the water fountain is approximately \(141.77\) feet.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad