Pregunta
upstudy study bank question image url

7. \( \left(3 x^{3} y^{2}\right)^{-3}\left(2 x^{4} y^{2}\right)^{2} \)

Ask by Donnelly Love. in the Philippines
Jan 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The simplified form is \( \frac{4}{27xy^{2}} \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

To simplify the expression \( \left(3 x^{3} y^{2}\right)^{-3}\left(2 x^{4} y^{2}\right)^{2} \), we can break it down step by step. First, let's simplify each part separately: 1. For \( \left(3 x^{3} y^{2}\right)^{-3} \): \[ = \frac{1}{(3 x^{3} y^{2})^{3}} = \frac{1}{27 x^{9} y^{6}} \] 2. For \( \left(2 x^{4} y^{2}\right)^{2} \): \[ = 4 x^{8} y^{4} \] Now, combining them: \[ \left(3 x^{3} y^{2}\right)^{-3}\left(2 x^{4} y^{2}\right)^{2} = \frac{4 x^{8} y^{4}}{27 x^{9} y^{6}} \] To simplify that further: \[ = \frac{4}{27} \cdot \frac{x^{8}}{x^{9}} \cdot \frac{y^{4}}{y^{6}} = \frac{4}{27} \cdot \frac{1}{x} \cdot \frac{1}{y^{2}} = \frac{4}{27 x y^{2}} \] So the simplified form is: \[ \frac{4}{27 x y^{2}} \]

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad