Perform the operation indicated. Simplify. \( \frac{x+2 y}{24 x^{2}} \cdot \frac{3 x}{x^{2}+x y-2 y^{2}} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
Let's simplify the expression step-by-step. We have: \[ \frac{x+2y}{24x^{2}} \cdot \frac{3x}{x^{2}+xy-2y^{2}} \] First, we can multiply the fractions: \[ = \frac{(x+2y) \cdot (3x)}{24x^{2} \cdot (x^{2}+xy-2y^{2})} \] Now, the numerator simplifies to: \[ 3x(x + 2y) = 3x^2 + 6xy \] Next, we will leave the denominator as is for now: \[ = \frac{3x^2 + 6xy}{24x^{2}(x^{2}+xy-2y^{2})} \] To simplify further, we can factor out the numerator: \[ = \frac{3x(x + 2y)}{24x^{2}(x^{2}+xy-2y^{2})} \] Now we can reduce the fraction by canceling common factors. Notice that \(3\) and \(24\) can simplify: \[ = \frac{x(x + 2y)}{8x^{2}(x^{2}+xy-2y^{2})} \] Now cancelling an \(x\) from the numerator and denominator (assuming \(x \neq 0\)) gives us: \[ = \frac{x + 2y}{8x(x^{2}+xy-2y^{2})} \] Thus, the simplified form of the given expression is: \[ \frac{x + 2y}{8x(x^{2}+xy-2y^{2})} \]
