Pregunta
upstudy study bank question image url

If \( \alpha \) and \( \beta \) are the roots of the quadratic equation \( p x^{2}+q x+r=0 \), express \( \left(\left(2+\alpha^{2}\right)\left(2+\beta^{2}\right)\right. \) in terms of \( p \) and \( q \)

Ask by Pierce Frazier. in Nigeria
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( (2 + \alpha^2)(2 + \beta^2) = 4 + \frac{2q^2 + r^2 - 4pr}{p^2} \)

Solución

To express \( \left( (2 + \alpha^2)(2 + \beta^2) \right) \) in terms of \( p \) and \( q \), we can start by expanding the expression: \[ (2 + \alpha^2)(2 + \beta^2) = 2 \cdot 2 + 2 \cdot \beta^2 + 2 \cdot \alpha^2 + \alpha^2 \beta^2 \] This simplifies to: \[ = 4 + 2(\alpha^2 + \beta^2) + \alpha^2 \beta^2 \] Next, we need to find \( \alpha^2 + \beta^2 \) and \( \alpha^2 \beta^2 \) in terms of \( p \) and \( q \). Using Vieta's formulas, we know: - \( \alpha + \beta = -\frac{q}{p} \) - \( \alpha \beta = \frac{r}{p} \) Now, we can find \( \alpha^2 + \beta^2 \): \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \] Substituting the values from Vieta's formulas: \[ \alpha^2 + \beta^2 = \left(-\frac{q}{p}\right)^2 - 2\left(\frac{r}{p}\right) \] This simplifies to: \[ \alpha^2 + \beta^2 = \frac{q^2}{p^2} - \frac{2r}{p} \] Next, we find \( \alpha^2 \beta^2 \): \[ \alpha^2 \beta^2 = (\alpha \beta)^2 = \left(\frac{r}{p}\right)^2 = \frac{r^2}{p^2} \] Now we can substitute these results back into our expression for \( (2 + \alpha^2)(2 + \beta^2) \): \[ (2 + \alpha^2)(2 + \beta^2) = 4 + 2\left(\frac{q^2}{p^2} - \frac{2r}{p}\right) + \frac{r^2}{p^2} \] This simplifies to: \[ = 4 + \frac{2q^2}{p^2} - \frac{4r}{p} + \frac{r^2}{p^2} \] Combining the terms gives: \[ = 4 + \frac{2q^2 + r^2 - 4pr}{p^2} \] Thus, the final expression for \( (2 + \alpha^2)(2 + \beta^2) \) in terms of \( p \) and \( q \) is: \[ \boxed{4 + \frac{2q^2 + r^2 - 4pr}{p^2}} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To express \( (2+\alpha^2)(2+\beta^2) \) in terms of \( p \) and \( q \), we can start by expanding the expression: \[ (2 + \alpha^2)(2 + \beta^2) = 4 + 2\alpha^2 + 2\beta^2 + \alpha^2\beta^2. \] Next, we use Vieta's formulas, which state: - \( \alpha + \beta = -\frac{q}{p} \) - \( \alpha\beta = \frac{r}{p} \) Now, we need to find \( \alpha^2 + \beta^2 \) and \( \alpha^2\beta^2 \). 1. **Calculating \( \alpha^2 + \beta^2 \)**: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \left(-\frac{q}{p}\right)^2 - 2\left(\frac{r}{p}\right) = \frac{q^2}{p^2} - \frac{2r}{p} = \frac{q^2 - 2rp}{p^2}. \] 2. **Calculating \( \alpha^2 \beta^2 \)**: \[ \alpha^2\beta^2 = (\alpha \beta)^2 = \left(\frac{r}{p}\right)^2 = \frac{r^2}{p^2}. \] Now substituting these results back into the expression we expanded: \[ (2 + \alpha^2)(2 + \beta^2) = 4 + 2\left(\frac{q^2 - 2rp}{p^2}\right) + \frac{r^2}{p^2}. \] This simplifies to: \[ = 4 + \frac{2(q^2 - 2rp) + r^2}{p^2} = 4 + \frac{2q^2 - 4rp + r^2}{p^2}. \] Combining everything under a common denominator gives: \[ = \frac{4p^2 + 2q^2 - 4rp + r^2}{p^2}. \] Therefore, the final expression for \( (2+\alpha^2)(2+\beta^2) \) in terms of \( p \) and \( q \) is: \[ \boxed{\frac{4p^2 + 2q^2 - 4rp + r^2}{p^2}}. \]

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad