If \( \alpha \) and \( \beta \) are the roots of the quadratic equation \( p x^{2}+q x+r=0 \), express \( \left(\left(2+\alpha^{2}\right)\left(2+\beta^{2}\right)\right. \) in terms of \( p \) and \( q \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To express \( (2+\alpha^2)(2+\beta^2) \) in terms of \( p \) and \( q \), we can start by expanding the expression: \[ (2 + \alpha^2)(2 + \beta^2) = 4 + 2\alpha^2 + 2\beta^2 + \alpha^2\beta^2. \] Next, we use Vieta's formulas, which state: - \( \alpha + \beta = -\frac{q}{p} \) - \( \alpha\beta = \frac{r}{p} \) Now, we need to find \( \alpha^2 + \beta^2 \) and \( \alpha^2\beta^2 \). 1. **Calculating \( \alpha^2 + \beta^2 \)**: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \left(-\frac{q}{p}\right)^2 - 2\left(\frac{r}{p}\right) = \frac{q^2}{p^2} - \frac{2r}{p} = \frac{q^2 - 2rp}{p^2}. \] 2. **Calculating \( \alpha^2 \beta^2 \)**: \[ \alpha^2\beta^2 = (\alpha \beta)^2 = \left(\frac{r}{p}\right)^2 = \frac{r^2}{p^2}. \] Now substituting these results back into the expression we expanded: \[ (2 + \alpha^2)(2 + \beta^2) = 4 + 2\left(\frac{q^2 - 2rp}{p^2}\right) + \frac{r^2}{p^2}. \] This simplifies to: \[ = 4 + \frac{2(q^2 - 2rp) + r^2}{p^2} = 4 + \frac{2q^2 - 4rp + r^2}{p^2}. \] Combining everything under a common denominator gives: \[ = \frac{4p^2 + 2q^2 - 4rp + r^2}{p^2}. \] Therefore, the final expression for \( (2+\alpha^2)(2+\beta^2) \) in terms of \( p \) and \( q \) is: \[ \boxed{\frac{4p^2 + 2q^2 - 4rp + r^2}{p^2}}. \]
