Pregunta
upstudy study bank question image url

\( (x+5)^{2}+(y-3)^{2}=49 \) and \( y^{\prime}+x=-9 \)

Ask by Spencer Stephens. in South Africa
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The points of intersection are \((-12, 3)\) and \((-5, -4)\).

Solución

We have two equations to work with: 1. The first equation is a circle: \[ (x+5)^{2}+(y-3)^{2}=49 \] This represents a circle centered at \((-5, 3)\) with a radius of \(7\) (since \(49 = 7^2\)). 2. The second equation is a linear equation: \[ y' + x = -9 \] This can be rewritten as: \[ y' = -x - 9 \] where \(y'\) represents the derivative of \(y\) with respect to \(x\). To find the points of intersection between the circle and the line, we will substitute \(y\) from the second equation into the first equation. Let's denote \(y = -x - 9\) and substitute it into the circle's equation: \[ (x+5)^{2} + ((-x - 9) - 3)^{2} = 49 \] Now, let's simplify this step by step: 1. Substitute \(y\): \[ (-x - 9 - 3) = -x - 12 \] So the equation becomes: \[ (x+5)^{2} + (-x - 12)^{2} = 49 \] 2. Expand both squares: \[ (x+5)^{2} = x^{2} + 10x + 25 \] \[ (-x - 12)^{2} = x^{2} + 24x + 144 \] 3. Combine these: \[ x^{2} + 10x + 25 + x^{2} + 24x + 144 = 49 \] \[ 2x^{2} + 34x + 169 = 49 \] 4. Move \(49\) to the left side: \[ 2x^{2} + 34x + 120 = 0 \] Now, we can solve this quadratic equation using the quadratic formula. The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \] where \(a = 2\), \(b = 34\), and \(c = 120\). Let's calculate the discriminant and then find the values of \(x\). Calculate the value by following steps: - step0: Calculate: \(34^{2}-4\times 2\times 120\) - step1: Multiply the terms: \(34^{2}-960\) - step2: Evaluate the power: \(1156-960\) - step3: Subtract the numbers: \(196\) Solve the equation \( 2x^2 + 34x + 120 = 0 \). Solve the quadratic equation by following steps: - step0: Solve by factoring: \(2x^{2}+34x+120=0\) - step1: Factor the expression: \(2\left(x+5\right)\left(x+12\right)=0\) - step2: Divide the terms: \(\left(x+5\right)\left(x+12\right)=0\) - step3: Separate into possible cases: \(\begin{align}&x+5=0\\&x+12=0\end{align}\) - step4: Solve the equation: \(\begin{align}&x=-5\\&x=-12\end{align}\) - step5: Rewrite: \(x_{1}=-12,x_{2}=-5\) We found the discriminant to be \(196\), which is positive, indicating that there are two real solutions for \(x\). The solutions are: \[ x_{1} = -12 \quad \text{and} \quad x_{2} = -5 \] Next, we will substitute these \(x\) values back into the equation \(y = -x - 9\) to find the corresponding \(y\) values. 1. For \(x_{1} = -12\): \[ y_{1} = -(-12) - 9 = 12 - 9 = 3 \] 2. For \(x_{2} = -5\): \[ y_{2} = -(-5) - 9 = 5 - 9 = -4 \] Thus, the points of intersection between the circle and the line are: 1. \((-12, 3)\) 2. \((-5, -4)\) In summary, the points of intersection are: - \((-12, 3)\) - \((-5, -4)\)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

The first equation represents a circle centered at (-5, 3) with a radius of 7. This means you can visualize it as a delightful round shape in the Cartesian plane, encompassing all points that are exactly 7 units away from that center. So, if you're ever feeling lost, just think of every point on that circle as a friendly marker leading back home! The second equation is a linear equation, and when written in slope-intercept form \(y' = -x - 9\), it represents a straight line. This line has a slope of -1 and a y-intercept of -9, meaning it gently slopes downwards, cutting through the y-axis at (0, -9). You could use this line to sketch a quick graph and see how it interacts with our circle—what exciting points of intersection will emerge?

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad