Pregunta
upstudy study bank question image url

\begin{tabular}{l} 16. \( y<2 x+1 \) \\ \( y \leq-x-4 \) \\ \hline \\ \hline\end{tabular}

Ask by Evans Pollard. in the United States
Nov 22,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution to the system of inequalities \( y < 2x + 1 \) and \( y \leq -x - 4 \) is the region in the coordinate plane below both lines, including the line \( y = -x - 4 \) but not including the line \( y = 2x + 1 \). The intersection point is \( \left(-\frac{5}{3}, -\frac{7}{3}\right) \).

Solución

To analyze the system of inequalities given: 1. \( y < 2x + 1 \) 2. \( y \leq -x - 4 \) We can graph these inequalities to find the solution region. ### Step 1: Graph the first inequality \( y < 2x + 1 \) - The line \( y = 2x + 1 \) is a straight line with a slope of 2 and a y-intercept of 1. - Since the inequality is strict (\(<\)), we will use a dashed line to indicate that points on the line are not included in the solution. - The region below this line represents the solution to the inequality. ### Step 2: Graph the second inequality \( y \leq -x - 4 \) - The line \( y = -x - 4 \) has a slope of -1 and a y-intercept of -4. - Since the inequality is non-strict (\(\leq\)), we will use a solid line to indicate that points on the line are included in the solution. - The region below this line represents the solution to the inequality. ### Step 3: Find the intersection of the two inequalities To find the intersection of the two lines, we can set them equal to each other: \[ 2x + 1 = -x - 4 \] Solving for \( x \): \[ 2x + x = -4 - 1 \] \[ 3x = -5 \] \[ x = -\frac{5}{3} \] Now, substitute \( x = -\frac{5}{3} \) back into one of the equations to find \( y \): Using \( y = 2x + 1 \): \[ y = 2\left(-\frac{5}{3}\right) + 1 = -\frac{10}{3} + 1 = -\frac{10}{3} + \frac{3}{3} = -\frac{7}{3} \] So the intersection point is: \[ \left(-\frac{5}{3}, -\frac{7}{3}\right) \] ### Step 4: Determine the solution region The solution region is where the shaded areas of both inequalities overlap. - The area below the dashed line \( y = 2x + 1 \) and below the solid line \( y = -x - 4 \) is the solution to the system of inequalities. ### Conclusion The solution to the system of inequalities \( y < 2x + 1 \) and \( y \leq -x - 4 \) is the region in the coordinate plane that is below both lines, including the line \( y = -x - 4 \) but not including the line \( y = 2x + 1 \). The intersection point \( \left(-\frac{5}{3}, -\frac{7}{3}\right) \) is also part of the boundary of the solution region.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Let’s start by visualizing this system of inequalities! The first inequality, \( y < 2x + 1 \), represents a line with a slope of 2, and the region is below this line, while the second inequality, \( y \leq -x - 4 \), is a line with a slope of -1 and includes the area below this line as well. Great news! The solution will be the area where the two shaded regions overlap. Now for those plotting these inequalities: common mistakes often involve forgetting to use a dashed line for \( < \) (less than) and an included line for \( \leq \) (less than or equal to). Mark your graphs clearly, ensuring the area of interest is shaded correctly, as that’s where the solutions to the system of inequalities will be found!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad