Pregunta
upstudy study bank question image url

Find \( f+g, f-g \), \( f g \), and \( \frac{f}{g} \). Determine the domain for each function. \( f(x)=x+1, g(x)=5 x^{2} \) \( (f+g)(x)=5 x^{2}+x+1 \) (Simplify your answer.) What is the domain of \( f+g \) ? A. The domain of \( f+g \) is B. The domain of \( f+g \) is \( \{ \) (Type your answer in interval notation.) (Use a comma to separate answers as needed.) C. The domain of \( f+g \) is \( \varnothing \).

Ask by Turnbull Moran. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The domain of \( f+g \) is all real numbers, which in interval notation is \( (-\infty, \infty) \).

Solución

We are given:   f(x) = x + 1   and   g(x) = 5x² Step 1. Find the functions. 1. f + g:   (f + g)(x) = f(x) + g(x) = (x + 1) + (5x²) = 5x² + x + 1 2. f – g:   (f – g)(x) = f(x) – g(x) = (x + 1) – (5x²) = –5x² + x + 1 3. f · g:   (f · g)(x) = f(x) · g(x) = (x + 1)(5x²) = 5x³ + 5x² 4. f / g:   (f / g)(x) = f(x) / g(x) = (x + 1) / (5x²)   Notice that division by zero is not allowed, so we must have 5x² ≠ 0, i.e. x ≠ 0. Step 2. Determine domains. For polynomial functions (f, g, f+g, f–g, and f·g), the domain is all real numbers, ℝ. a. Domain of f + g:   Since f + g is a polynomial, its domain is all real numbers.   In interval notation, that is (–∞, ∞). b. Domain of f – g:   Also all real numbers: (–∞, ∞). c. Domain of f · g:   Also all real numbers: (–∞, ∞). d. Domain of f / g:   The fraction is defined for all x except where g(x) = 0. Since g(x) = 5x² = 0 when x = 0, the domain is x ∈ ℝ except 0.   In interval notation: (–∞, 0) ∪ (0, ∞). Answering the specific question: What is the domain of f + g? Since (f + g)(x) = 5x² + x + 1 is a polynomial, its domain is (–∞, ∞). Thus, the answer is: B. The domain of f+g is (–∞, ∞).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find \( f-g \), \( fg \), and \( \frac{f}{g} \): 1. **For \( f-g \)**: \[ (f-g)(x) = f(x) - g(x) = (x + 1) - (5x^2) = -5x^2 + x + 1. \] 2. **For \( fg \)**: \[ (fg)(x) = f(x) \cdot g(x) = (x + 1)(5x^2) = 5x^3 + 5x^2. \] 3. **For \( \frac{f}{g} \)**: \[ \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{x + 1}{5x^2}. \] This is defined for all \( x \) except where \( g(x) = 0 \). Since \( g(x) = 5x^2 \), it's zero at \( x=0 \). Now, let's determine the domains: A. The domain of \( f+g \) is all real numbers since both \( f(x) \) and \( g(x) \) have no restrictions on their domains. B. The domain of \( f+g \) is \( (-\infty, \infty) \). C. The domain of \( f-g \) is also \( (-\infty, \infty) \), since it's a polynomial. For \( fg \): The domain of \( fg \) is \( (-\infty, \infty) \) as well. For \( \frac{f}{g} \): Since \( \frac{f}{g}(x) \) is undefined at \( x=0 \), the domain is all real numbers except 0. The final domain for \( \frac{f}{g} \) is \( (-\infty, 0) \cup (0, \infty) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad