Pregunta
\[ f(x) = 3x + 4 \quad g(x) = 2x - 3 \] \[ \text{Find: } f \circ g(x) \]
Ask by Ford Potter. in South Africa
Feb 21,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\( f \circ g(x) = 6x - 5 \)
Solución
To find \( f \circ g(x) \), we need to substitute the expression for \( g(x) \) into the expression for \( f(x) \).
Given:
\[ f(x) = 3x + 4 \]
\[ g(x) = 2x - 3 \]
Substitute \( g(x) \) into \( f(x) \):
\[ f(g(x)) = 3(2x - 3) + 4 \]
Now, simplify the expression:
\[ f(g(x)) = 6x - 9 + 4 \]
\[ f(g(x)) = 6x - 5 \]
Therefore, \( f \circ g(x) = 6x - 5 \).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
To find \( f \circ g(x) \), we need to substitute \( g(x) \) into \( f(x) \). This means we will take \( g(x) = 2x - 3 \) and plug it into \( f(x) \): \[ f(g(x)) = f(2x - 3) = 3(2x - 3) + 4 \] Now, let's simplify this: \[ f(g(x)) = 3 \cdot 2x - 3 \cdot 3 + 4 = 6x - 9 + 4 = 6x - 5 \] Therefore, the result is: \[ f \circ g(x) = 6x - 5 \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium