Pregunta
upstudy study bank question image url

What is the equation of the line that passes through the point \( (-4,-5) \) and has a slope of 2 ?

Ask by Gardner Reeves. in the United States
Jan 30,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation of the line is \( y = 2x + 3 \).

Solución

To find the equation of a line that passes through the point \((-4, -5)\) with a slope of \(2\), you can use the **point-slope form** of a linear equation: \[ y - y_1 = m(x - x_1) \] Where: - \( (x_1, y_1) \) is the given point \((-4, -5)\) - \( m \) is the slope \(2\) Plugging in the values: \[ y - (-5) = 2(x - (-4)) \] \[ y + 5 = 2(x + 4) \] Simplifying this to **slope-intercept form** \((y = mx + b)\): \[ y + 5 = 2x + 8 \] \[ y = 2x + 8 - 5 \] \[ y = 2x + 3 \] **Final Equation:** \[ y = 2x + 3 \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the equation of the line, you can use the point-slope form, which is written as \( y - y_1 = m(x - x_1) \). Plugging in the point \( (-4, -5) \) for \( (x_1, y_1) \) and the slope \( m = 2 \), we have: \( y - (-5) = 2(x - (-4)) \) This simplifies to: \( y + 5 = 2(x + 4) \) Expanding and solving, we get: \( y + 5 = 2x + 8 \) So, the equation of the line in slope-intercept form is \( y = 2x + 3 \). You just created the equation of a line that captures both its steepness with a slope of 2 and the specific point where it crosses through! This form is super handy because you now know the y-intercept is 3, which means it crosses the y-axis at that point. As you work on understanding lines, keep in mind that practicing with points and slopes helps you visualize how lines behave on a graph. You can even try drawing it out to see how the slope affects the angle of the line!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad