Pregunta
upstudy study bank question image url

12. Multiple Choice 1 point Identify the graph of the following polynomial \( f(x)=-\frac{1}{4} x(x-2)(x+2)^{2} \)

Ask by Todd Erickson. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The graph is a fourth-degree polynomial with zeros at x = –2 (touching the axis), 0, and 2 (crossing the axis). Both ends of the graph go down to negative infinity.

Solución

We wish to identify the graph of   f(x) = –(1/4)·x·(x – 2)·(x + 2)². Step 1. Find the degree and end behavior.  • The factors are x (degree 1), (x – 2) (degree 1) and (x + 2)² (degree 2); so the overall degree is 1 + 1 + 2 = 4.  • The leading term comes from multiplying the highest‐degree term from each factor. That is, from   x · x · x² = x⁴  and multiplied by the constant –1/4, so the leading term is –(1/4)x⁴.  • Because the degree is even and the leading coefficient is negative, as x → ±∞ we have f(x) → –∞. Step 2. Locate the zeros and note their multiplicities.  • Zero at x = 0 from the factor x; multiplicity 1.  • Zero at x = 2 from (x – 2); multiplicity 1.  • Zero at x = –2 from (x + 2)²; multiplicity 2. Recall that a zero of odd multiplicity shows the graph crossing the x‐axis, while a zero of even multiplicity causes the graph to “touch” or “bounce” off the x‐axis.  • Thus the graph crosses at x = 0 and x = 2, and it touches (does not cross) at x = –2. Step 3. What does the graph look like?  • Since f is a quartic with negative leading coefficient, both ends of the graph go down.  • There are three zeros: at –2 (with a bounce), 0, and 2.  • The fact that the graph crosses at x=0 and x=2 and only touches at x=–2 (and the overall “downward‐opening” nature) helps us pick out the correct graph from a list of choices. A correct answer description is:   “The graph of f(x) is a fourth‐degree polynomial with zeros at x = –2, 0, and 2 (with the graph only touching the axis at x = –2). Since the leading coefficient is negative, the ends of the graph both fall to –∞.” Any answer that matches this description is correct.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To visualize the polynomial \( f(x)=-\frac{1}{4} x(x-2)(x+2)^{2} \), you can analyze its critical points. The roots occur at \( x = 0 \), \( x = 2 \), and \( x = -2 \), with \( x = -2 \) being a double root, which means the graph will touch the x-axis and turn around at this point. The leading coefficient is negative, indicating that the graph will open downwards, giving it a "frown" shape. Now, let's consider the behavior around the roots: the function is positive between \( -2 \) and \( 0 \), negative beyond these points. When graphed, you’ll see a maximum peak after \( -2 \), falling before hitting \( 0 \), dipping down past \( 2 \), and heading downward as x moves toward positive infinity. This creates a compelling visual story of a polynomial that rises, peaks, dips, and plunges!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad