\( 1 \leftarrow \) The function \( f(x)=\frac{5}{3+x} \) is one-to-one. (a) Find its inverse function \( f^{-1} \) and check your answer. (b) Find the domain and the range of \( f \) and \( f^{-1} \). (a) \( f^{-1}(x)=\frac{5-3 x}{x} \) (Simplify your answer.) (b) The domain of \( f \) is \( (-\infty,-3) \cup(-3, \infty) \). (Type your answer in interval notation.) The range of \( f \) is \( (-\infty, 0) \cup(0, \infty) \). (Type your answer in interval notation.) The domain of \( f-1 \) is \( \square \). (Type your answer in interhal notation.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To solve for the inverse function of \( f(x) = \frac{5}{3+x} \), first, we replace \( f(x) \) with \( y \): \[ y = \frac{5}{3+x} \] To find the inverse, we rearrange the equation to solve for \( x \): \[ y(3 + x) = 5 \] \[ 3 + x = \frac{5}{y} \] \[ x = \frac{5}{y} - 3 \] Thus, \[ f^{-1}(x) = \frac{5}{x} - 3 \] Now, let's check our work: Substituting \( f^{-1}(x) \) back into \( f \): \[ f(f^{-1}(x)) = f\left(\frac{5}{x} - 3\right) = \frac{5}{3 + \left(\frac{5}{x} - 3\right)} = \frac{5}{\frac{5}{x}} = x \] This confirms that \( f^{-1}(x) = \frac{5}{x} - 3 \). For the domain and range: (b) The domain of \( f(x) \) is all reals except \( -3 \) (where the function is undefined), which is expressed as \( (-\infty, -3) \cup (-3, \infty) \). The range of \( f(x) \) does not include \( 0 \), so it's \( (-\infty, 0) \cup (0, \infty) \). For \( f^{-1}(x) \), its domain is all real numbers except \( 0 \), leading to \( (-\infty, 0) \cup (0, \infty) \) as well. Summarizing: The function \( f^{-1}(x) \) is \( \frac{5}{x} - 3 \), the domain of \( f \) is \( (-\infty, -3) \cup (-3, \infty) \), the range of \( f \) is \( (-\infty, 0) \cup (0, \infty) \), and the domain of \( f^{-1} \) is \( (-\infty, 0) \cup (0, \infty) \).
