Pregunta
upstudy study bank question image url

1. XERCISE 2 1. Prove the following: (a) \( \cos (\alpha+\beta)+\cos (\alpha-\beta)=2 \cos \alpha, \cos \beta \) (b) \( \sin \left(\theta+30^{\circ}\right)-\sin \left(\theta-30^{\circ}\right)=\cos \theta \) (c) \( \cos \left(45^{\circ}-\theta\right)-\sin \left(45^{\circ}-\theta\right)=\sqrt{2} \sin \theta \)

Ask by Warren Norton. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) \( \cos (\alpha+\beta) + \cos (\alpha-\beta) = 2 \cos \alpha \cos \beta \) (b) \( \sin \left(\theta + 30^{\circ}\right) - \sin \left(\theta - 30^{\circ}\right) = \cos \theta \) (c) \( \cos \left(45^{\circ} - \theta\right) - \sin \left(45^{\circ} - \theta\right) = \sqrt{2} \sin \theta \)

Solución

To prove the given trigonometric identities, we will use known trigonometric identities and properties. Let's go through each part step by step. ### (a) Prove that \( \cos (\alpha+\beta) + \cos (\alpha-\beta) = 2 \cos \alpha \cos \beta \) **Step 1: Use the cosine addition and subtraction formulas.** The cosine addition and subtraction formulas are: \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] \[ \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \] **Step 2: Add the two equations.** Now, we add these two equations: \[ \cos(\alpha + \beta) + \cos(\alpha - \beta) = (\cos \alpha \cos \beta - \sin \alpha \sin \beta) + (\cos \alpha \cos \beta + \sin \alpha \sin \beta) \] **Step 3: Simplify the expression.** This simplifies to: \[ \cos(\alpha + \beta) + \cos(\alpha - \beta) = 2 \cos \alpha \cos \beta \] Thus, we have proved that: \[ \cos (\alpha+\beta) + \cos (\alpha-\beta) = 2 \cos \alpha \cos \beta \] ### (b) Prove that \( \sin \left(\theta + 30^{\circ}\right) - \sin \left(\theta - 30^{\circ}\right) = \cos \theta \) **Step 1: Use the sine subtraction formula.** The sine subtraction formula is: \[ \sin(A) - \sin(B) = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] **Step 2: Apply it to our case.** Let \( A = \theta + 30^{\circ} \) and \( B = \theta - 30^{\circ} \): \[ \sin\left(\theta + 30^{\circ}\right) - \sin\left(\theta - 30^{\circ}\right) = 2 \cos\left(\frac{(\theta + 30^{\circ}) + (\theta - 30^{\circ})}{2}\right) \sin\left(\frac{(\theta + 30^{\circ}) - (\theta - 30^{\circ})}{2}\right) \] **Step 3: Simplify the arguments.** Calculating the averages: \[ \frac{(\theta + 30^{\circ}) + (\theta - 30^{\circ})}{2} = \frac{2\theta}{2} = \theta \] \[ \frac{(\theta + 30^{\circ}) - (\theta - 30^{\circ})}{2} = \frac{60^{\circ}}{2} = 30^{\circ} \] **Step 4: Substitute back into the equation.** Thus, we have: \[ \sin\left(\theta + 30^{\circ}\right) - \sin\left(\theta - 30^{\circ}\right) = 2 \cos(\theta) \sin(30^{\circ}) \] Since \( \sin(30^{\circ}) = \frac{1}{2} \): \[ = 2 \cos(\theta) \cdot \frac{1}{2} = \cos(\theta) \] Thus, we have proved that: \[ \sin \left(\theta + 30^{\circ}\right) - \sin \left(\theta - 30^{\circ}\right) = \cos \theta \] ### (c) Prove that \( \cos \left(45^{\circ} - \theta\right) - \sin \left(45^{\circ} - \theta\right) = \sqrt{2} \sin \theta \) **Step 1: Use the cosine and sine of a difference.** Using the cosine and sine of a difference: \[ \cos(45^{\circ} - \theta) = \cos 45^{\circ} \cos \theta + \sin 45^{\circ} \sin \theta \] \[ \sin(45^{\circ} - \theta) = \sin 45^{\circ} \cos \theta - \cos 45^{\circ} \sin \theta \] **Step 2: Substitute the values of \( \cos 45^{\circ} \) and \( \sin 45^{\circ} \).** Since \( \cos 45^{\circ} = \sin 45^{\circ} = \frac{\sqrt{2}}{2} \): \[ \cos(45^{\circ} - \theta) = \frac{\sqrt{2}}{2} \cos \theta + \frac{\sqrt{2}}{2} \sin \theta \] \[ \sin(45^{\circ} - \theta) = \frac{\sqrt{2}}{2} \cos \theta - \frac{\sqrt{2}}{2} \sin \theta \] **Step 3: Substitute into the equation.** Now, substituting these into the left-hand side: \[ \cos(45^{\circ} - \theta) - \sin(45^{\circ} - \theta) = \left(\frac{\sqrt{2}}{2} \cos \theta + \frac{\sqrt{2}}{2} \sin \theta\right) - \left(\frac{\sqrt{2}}{2} \cos \theta - \frac{\sqrt{2}}{2} \sin \theta\right) \] **Step 4: Simplify the expression.** This simplifies to: \[ = \frac{\sqrt{2}}{2} \cos \theta + \frac{\sqrt{2}}{2} \sin \theta - \frac{\sqrt{2}}{2} \cos \theta + \frac{\sqrt{2}}{2} \sin \theta \] \[ = \sqrt{2} \sin \theta \] Thus, we have proved that: \[ \cos \left(45^{\circ} - \theta\right) - \sin \left(45^{\circ} - \theta\right) = \sqrt{2} \sin \theta \] ### Conclusion We have successfully proved all three identities: 1. \( \cos (\alpha+\beta) + \cos (\alpha-\beta) = 2 \cos \alpha \cos \beta \) 2. \( \sin \left(\theta + 30^{\circ}\right) - \sin \left(\theta - 30^{\

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To prove these trigonometric identities, we can use angle addition formulas and properties of the sine and cosine functions. (a) For \( \cos (\alpha+\beta)+\cos (\alpha-\beta)\): We apply the cosine addition and subtraction formulas: \[ \cos (\alpha+\beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] \[ \cos (\alpha-\beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \] Adding these two results yields: \[ \cos (\alpha+\beta) + \cos (\alpha-\beta) = 2 \cos \alpha \cos \beta \] Thus, proving the identity. (b) For \( \sin \left(\theta+30^{\circ}\right)-\sin \left(\theta-30^{\circ}\right) \): Using the sine subtraction formula: \[ \sin A - \sin B = 2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right) \] Let \( A = \theta + 30^{\circ} \) and \( B = \theta - 30^{\circ} \): \[ \sin \left(\theta+30^{\circ}\right)-\sin \left(\theta-30^{\circ}\right) = 2 \cos \left(\theta\right) \sin(30^{\circ}) = 2 \cos \theta \cdot \frac{1}{2} = \cos \theta \] This proves the identity. (c) For \( \cos \left(45^{\circ}-\theta\right)-\sin \left(45^{\circ}-\theta\right) \): We can use angle subtraction formulas: \[ \cos (45^{\circ} - \theta) = \cos 45^{\circ} \cos \theta + \sin 45^{\circ} \sin \theta = \frac{\sqrt{2}}{2} \cos \theta + \frac{\sqrt{2}}{2} \sin \theta \] \[ \sin (45^{\circ} - \theta) = \sin 45^{\circ} \cos \theta - \cos 45^{\circ} \sin \theta = \frac{\sqrt{2}}{2} \cos \theta - \frac{\sqrt{2}}{2} \sin \theta \] Thus: \[ \cos (45^{\circ} - \theta) - \sin (45^{\circ} - \theta) = \left(\frac{\sqrt{2}}{2} \cos \theta + \frac{\sqrt{2}}{2} \sin \theta\right) - \left(\frac{\sqrt{2}}{2} \cos \theta - \frac{\sqrt{2}}{2} \sin \theta\right) = \sqrt{2} \sin \theta \] This confirms the identity.

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad