1. XERCISE 2 1. Prove the following: (a) \( \cos (\alpha+\beta)+\cos (\alpha-\beta)=2 \cos \alpha, \cos \beta \) (b) \( \sin \left(\theta+30^{\circ}\right)-\sin \left(\theta-30^{\circ}\right)=\cos \theta \) (c) \( \cos \left(45^{\circ}-\theta\right)-\sin \left(45^{\circ}-\theta\right)=\sqrt{2} \sin \theta \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To prove these trigonometric identities, we can use angle addition formulas and properties of the sine and cosine functions. (a) For \( \cos (\alpha+\beta)+\cos (\alpha-\beta)\): We apply the cosine addition and subtraction formulas: \[ \cos (\alpha+\beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] \[ \cos (\alpha-\beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \] Adding these two results yields: \[ \cos (\alpha+\beta) + \cos (\alpha-\beta) = 2 \cos \alpha \cos \beta \] Thus, proving the identity. (b) For \( \sin \left(\theta+30^{\circ}\right)-\sin \left(\theta-30^{\circ}\right) \): Using the sine subtraction formula: \[ \sin A - \sin B = 2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right) \] Let \( A = \theta + 30^{\circ} \) and \( B = \theta - 30^{\circ} \): \[ \sin \left(\theta+30^{\circ}\right)-\sin \left(\theta-30^{\circ}\right) = 2 \cos \left(\theta\right) \sin(30^{\circ}) = 2 \cos \theta \cdot \frac{1}{2} = \cos \theta \] This proves the identity. (c) For \( \cos \left(45^{\circ}-\theta\right)-\sin \left(45^{\circ}-\theta\right) \): We can use angle subtraction formulas: \[ \cos (45^{\circ} - \theta) = \cos 45^{\circ} \cos \theta + \sin 45^{\circ} \sin \theta = \frac{\sqrt{2}}{2} \cos \theta + \frac{\sqrt{2}}{2} \sin \theta \] \[ \sin (45^{\circ} - \theta) = \sin 45^{\circ} \cos \theta - \cos 45^{\circ} \sin \theta = \frac{\sqrt{2}}{2} \cos \theta - \frac{\sqrt{2}}{2} \sin \theta \] Thus: \[ \cos (45^{\circ} - \theta) - \sin (45^{\circ} - \theta) = \left(\frac{\sqrt{2}}{2} \cos \theta + \frac{\sqrt{2}}{2} \sin \theta\right) - \left(\frac{\sqrt{2}}{2} \cos \theta - \frac{\sqrt{2}}{2} \sin \theta\right) = \sqrt{2} \sin \theta \] This confirms the identity.
