Pregunta
upstudy study bank question image url

Question An electrician leans an extension ladder against the outside wall of a house so that it reaches an electric box 22 feet up. The ladder makes an angle of \( 66^{\circ} \) with the ground. Find the length of the ladder. Round your answer to the nearest tenth of a foot if necessary.

Ask by Mills Lewis. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The length of the ladder is approximately 24.1 feet.

Solución

To find the length of the ladder, we can use the sine function from trigonometry. The sine of an angle in a right triangle is defined as the ratio of the length of the opposite side to the length of the hypotenuse. In this case: - The height of the electric box (the opposite side) is 22 feet. - The angle the ladder makes with the ground is \( 66^\circ \). - The length of the ladder is the hypotenuse. Using the sine function: \[ \sin(66^\circ) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{22}{L} \] where \( L \) is the length of the ladder. Rearranging the equation to solve for \( L \): \[ L = \frac{22}{\sin(66^\circ)} \] Now, we need to calculate \( \sin(66^\circ) \). Using a calculator: \[ \sin(66^\circ) \approx 0.9135 \] Now substituting this value back into the equation for \( L \): \[ L = \frac{22}{0.9135} \approx 24.1 \] Thus, the length of the ladder is approximately \( 24.1 \) feet when rounded to the nearest tenth. Therefore, the length of the ladder is \( \boxed{24.1} \) feet.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the length of the ladder, we can use the sine function from trigonometry. The sine of an angle in a right triangle is the ratio of the opposite side (the height the ladder reaches) to the hypotenuse (the length of the ladder). We can set up the equation: \[ \sin(66^{\circ}) = \frac{22 \text{ feet}}{L} \] Where \( L \) is the length of the ladder. Rearranging this gives: \[ L = \frac{22}{\sin(66^{\circ})} \] Calculating this, \[ L \approx \frac{22}{0.9135} \approx 24.1 \text{ feet} \] So, the length of the ladder is approximately 24.1 feet. Now, for some extra insights: Imagine the moments when ladders were a vital invention! Dating back to ancient civilization, ladders helped builders reach new heights—think Egyptian pyramids and Roman aqueducts! They weren’t just tools; they represented the desire to rise above the ordinary, both literally and metaphorically. And who knew that those rickety wooden ladders narrated tales of ambition and innovation? When using a ladder, safety is paramount! Always ensure it's positioned on stable ground, and don't forget to maintain a three-point contact (two hands and one foot, or two feet and one hand) while climbing. A common mistake is leaning too far while reaching, which can lead to falls. Also, check the angle—55-75 degrees is generally safe to maintain stability while you work your magic, whether fixing a light or cleaning gutters!

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad