Pregunta
upstudy study bank question image url

Solve the system by any method. \[ \begin{array}{r} x+4 y-z=3 \\ 3 x+9 y+z+3 w=6 \\ 2 x+5 y+2 z+3 w=4 \end{array} \] Select the correct answer, and if necessary, fill in the answer boxes to complete your choice. A. The system has exactly one solution ( \( \square \) , \( \square \) \( \square \) , \( \square \) B. This system has infinitely many solutions of the form \( \square \) , ,, , w), where \( w \) is any real number. (Type expressions using \( w \) as the variable.) C. The system has no solution.

Ask by Gray Logan. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The system has no solution.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

To solve this system of equations, we can use the method of elimination or substitution. Let's simplify the equations provided. 1. The first equation is: \[ x + 4y - z = 3 \quad (1) \] 2. The second equation simplifies (after rearranging) to: \[ 3x + 9y + z + 3w = 6 \quad (2) \] 3. The third equation can also be rearranged to: \[ 2x + 5y + 2z + 3w = 4 \quad (3) \] Next, let's express \( z \) from Equation (1): \[ z = x + 4y - 3 \] Now that we have \( z \), we can substitute it into Equations (2) and (3) to eliminate \( z \). Substituting into Equation (2): \[ 3x + 9y + (x + 4y - 3) + 3w = 6 \] This simplifies to: \[ 4x + 13y + 3w - 3 = 6 \quad \implies 4x + 13y + 3w = 9 \quad (4) \] Substituting into Equation (3): \[ 2x + 5y + 2(x + 4y - 3) + 3w = 4 \] This simplifies to: \[ 2x + 5y + 2x + 8y - 6 + 3w = 4 \quad \implies 4x + 13y + 3w - 6 = 4 \quad \implies 4x + 13y + 3w = 10 \quad (5) \] Now, we have a simplified system of two equations: \[ 4x + 13y + 3w = 9 \quad (4) \] \[ 4x + 13y + 3w = 10 \quad (5) \] Observe that Equations (4) and (5) are contradictory (the left sides are equal, but the right sides are different). This indicates that there is no solution to this system. Thus, the conclusion is: C. The system has no solution.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad