For the plecewise linear function, find \( (a) f(-4),(b) f(-2) \), (c) \( f(0) \), (d) \( f(2) \), and \( (e) f(5) \) \( f(x)=\left\{\begin{array}{ll}2 x & \text { if } x \leq-2 \\ x-2 & \text { if } x>-2\end{array}\right. \) (a) \( f(-4)=\square \) (b) \( f(-2)=\square \) (c) \( f(0)=\square \) (d) \( f(2)=\square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To solve for \( f(x) \) at the given values, we need to determine which piece of the piecewise function to use for each input. For \( (a) f(-4) \): Since \(-4 \leq -2\), we use the first piece: \[ f(-4) = 2(-4) = -8 \] So, \( f(-4) = -8 \). For \( (b) f(-2) \): Here, we still use the first piece since \(-2\) is equal to \(-2\): \[ f(-2) = 2(-2) = -4 \] Thus, \( f(-2) = -4 \). For \( (c) f(0) \): Since \(0 > -2\), we switch to the second piece: \[ f(0) = 0 - 2 = -2 \] Therefore, \( f(0) = -2 \). For \( (d) f(2) \): Again, since \(2 > -2\), we use the second piece: \[ f(2) = 2 - 2 = 0 \] So, \( f(2) = 0 \). Thus, we have summarized the results as: (a) \( f(-4)=-8 \) (b) \( f(-2)=-4 \) (c) \( f(0)=-2 \) (d) \( f(2)=0 \)
