Pregunta
upstudy study bank question image url

Solve the system by any method. \[ \begin{array}{r}x+y-z=-17 \\ 2 x-y+z=2\end{array} \] Select the correct choice and, if necessary, fill in any answer boxes within your choice. A. There is one solution. The solution set is ( (Simplify your answers.) B. There are infinitely many solutions. The solution set is \( (\square, \square, z) \), where \( z \) is any real number. (Simplify your answers. Use integers or fractions for any numbers in the expressions.) C. There is no solution.

Ask by Dunn Mcdonald. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

There are infinitely many solutions. The solution set is (–5, z – 12, z), where z is any real number.

Solución

We start with the system:   (1) x + y – z = –17   (2) 2x – y + z = 2 Step 1. Add (1) and (2) to eliminate y and z:   (x + y – z) + (2x – y + z) = –17 + 2   3x = –15   x = –5 Step 2. Substitute x = –5 into (1):   –5 + y – z = –17   y – z = –12   y = z – 12 Notice that substituting x = –5 into equation (2) gives:   2(–5) – y + z = 2   –10 – y + z = 2   –y + z = 12   y = z – 12 Thus, the equations are consistent, and y is expressed in terms of z. Answer: There are infinitely many solutions. The solution set is (–5, z – 12, z), where z can be any real number.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the system of equations: 1. Start with the two equations: \[ x + y - z = -17 \quad \text{(1)} \] \[ 2x - y + z = 2 \quad \text{(2)} \] 2. Rearranging equation (1) for \( z \): \[ z = x + y + 17 \quad \text{(3)} \] 3. Substitute equation (3) into equation (2): \[ 2x - y + (x + y + 17) = 2 \] Simplifying this gives: \[ 3x + 17 = 2 \quad \Rightarrow \quad 3x = -15 \quad \Rightarrow \quad x = -5 \] 4. Substitute \( x = -5 \) back into equation (3): \[ z = -5 + y + 17 \quad \Rightarrow \quad z = y + 12 \quad \text{(4)} \] 5. Substitute \( x = -5 \) into equation (1) to find \( y \): \[ -5 + y - z = -17 \quad \Rightarrow \quad y - z = -12 \quad \Rightarrow \quad z = y + 12 \quad \text{(which matches equation (4))} \] From equation (4), we conclude \( z \) depends on \( y \). Hence, we have infinite solutions and can express the solution set as: \[ \text{Solution Set: } (-5, y, y + 12) \text{ where } y \text{ is any real number.} \] So, the correct choice is: B. There are infinitely many solutions. The solution set is \( (-5, y, y + 12) \), where \( y \) is any real number.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad