For Problems 7-10, indicate whethe solution of the inequality \( 33 x+55 \) 7. \( x=-2 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To determine whether \( x = -2 \) is a solution to the inequality \( 33x + 55 \), we need to first rewrite it as an inequality. Let's consider \( 33x + 55 > 0 \) or \( 33x + 55 < 0 \). When plugging in \( x = -2 \): \[ 33(-2) + 55 = -66 + 55 = -11 \] If the inequality were \( 33x + 55 < 0 \), then \( x = -2 \) would indeed be a solution since \(-11 < 0\). However, if the inequality were \( 33x + 55 > 0 \), \( x = -2 \) would not be a solution, as \(-11\) is not greater than 0. Thus, the answer depends on the original inequality given. To summarize, you need to clarify whether you're testing for greater than or less than to find the correct solution status for \( x = -2\)!
