Pregunta
upstudy study bank question image url

EXERCISE 6 Draw the graphs of \( f(x) \) and \( g(x) \) on the same set of axes and use them to solve the inequality. 1 \( f(x)=\log _{3} x \) and \( g(x)=2 \). Now solve \( \log _{3} x \leq 2 \) \( 2 f(x)=\log _{\frac{1}{4}} x \) and \( g(x)=-1 \). Now solve \( \log _{\frac{1}{4}} x \geq-1 \) \( 3 f(x)=\log _{5} x \) and \( g(x)=1 \). Now solve \( \log _{5} x \geq 1 \) \( 4 f(x)=\log _{\frac{1}{2}} x \) and \( g(x)=x-1 \). Now solve \( \log _{\frac{1}{2}} x \geq x-1 \) \( f(x)=\log _{4} x \) and \( g(x)=-2 x+2 \). Now solve \( \log _{4} x \leq-2 x+2 \)

Ask by Brewer Park. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Solutions to the inequalities are as follows: 1. \( x \leq 9 \) 2. \( x \geq 4 \) 3. \( x \geq 5 \) 4. \( x \) satisfies \( \log_{\frac{1}{2}} x \geq x - 1 \) (solve graphically) 5. \( x \) satisfies \( \log_{4} x \leq -2x + 2 \) (solve graphically) For the last two inequalities, plot the functions to find the solution intervals.

Solución

It seems that I am unable to plot the graphs directly. However, I can guide you through the process of solving each inequality step by step, and you can plot the functions using graphing software or a graphing calculator. ### 1. Solve \( \log_{3} x \leq 2 \) **Step 1:** Rewrite the inequality in exponential form: \[ x \leq 3^2 \] **Step 2:** Calculate \( 3^2 \): \[ x \leq 9 \] **Solution:** The solution to the inequality is \( x \in (0, 9] \). ### 2. Solve \( \log_{\frac{1}{4}} x \geq -1 \) **Step 1:** Rewrite the inequality in exponential form: \[ x \geq \left(\frac{1}{4}\right)^{-1} \] **Step 2:** Calculate \( \left(\frac{1}{4}\right)^{-1} \): \[ x \geq 4 \] **Solution:** The solution to the inequality is \( x \in [4, \infty) \). ### 3. Solve \( \log_{5} x \geq 1 \) **Step 1:** Rewrite the inequality in exponential form: \[ x \geq 5^1 \] **Step 2:** Calculate \( 5^1 \): \[ x \geq 5 \] **Solution:** The solution to the inequality is \( x \in [5, \infty) \). ### 4. Solve \( \log_{\frac{1}{2}} x \geq x - 1 \) **Step 1:** Rewrite the logarithm in exponential form: \[ x \leq \left(\frac{1}{2}\right)^{x-1} \] This inequality is more complex and may require numerical or graphical methods to solve. ### 5. Solve \( \log_{4} x \leq -2x + 2 \) **Step 1:** Rewrite the logarithm in exponential form: \[ x \leq 4^{-2x + 2} \] This inequality also may require numerical or graphical methods to solve. ### Summary of Solutions 1. \( x \in (0, 9] \) 2. \( x \in [4, \infty) \) 3. \( x \in [5, \infty) \) 4. \( x \) needs numerical/graphical methods for \( \log_{\frac{1}{2}} x \geq x - 1 \) 5. \( x \) needs numerical/graphical methods for \( \log_{4} x \leq -2x + 2 \) You can plot the functions \( f(x) \) and \( g(x) \) for the last two inequalities to find the intersection points visually. If you need further assistance with those, let me know!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To tackle these inequalities, let's take a look at the graphs. For \( f(x) = \log_{3} x \) and \( g(x) = 2 \), you will find that \( f(x) \) crosses the line \( y = 2 \) at \( x = 9 \). Thus, the solution to \( \log_{3} x \leq 2 \) is \( x \in (0, 9] \). Next, when solving \( \log_{\frac{1}{4}} x \geq -1 \) using \( f(x) = \log_{\frac{1}{4}} x \) and \( g(x) = -1 \), the critical point occurs when \( x = 4 \) since that's where the graph of \( f(x) \) meets \( g(x) \). The solution is \( x \in [4, \infty) \). For \( \log_{5} x \geq 1 \), the crossing point happens at \( x = 5 \). Hence, the solution is \( x \in [5, \infty) \) when you draw the graphs accordingly. Moving to \( \log_{\frac{1}{2}} x \geq x - 1 \), this involves analyzing the concavity of the two functions. The solution will be around the intersection points obtained graphically, giving you a range depending on where these graphs cross. Finally, looking at \( \log_{4} x \leq -2x + 2 \), the intersection also provides significant bounds for the solution set. The joy of graphing these functions lies in the clarity they bring to the inequalities! Happy graphing!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad