Responder
a) \( \frac{1}{8} + \frac{1}{6} = \frac{7}{24} \)
b) \( \frac{9}{10} - \frac{1}{7} = \frac{53}{70} \)
c) \( 1 \frac{3}{5} + \frac{3}{5} = 2 \frac{1}{5} \)
d)
- a) \( \frac{2}{5} \text{ of } 45 = 18 \)
- b) \( \frac{6}{10} \times 120 = 72 \)
Solución
Calculate the value by following steps:
- step0: Calculate:
\(\frac{1}{8}+\frac{1}{6}\)
- step1: Reduce fractions to a common denominator:
\(\frac{3}{8\times 3}+\frac{4}{6\times 4}\)
- step2: Multiply the numbers:
\(\frac{3}{24}+\frac{4}{6\times 4}\)
- step3: Multiply the numbers:
\(\frac{3}{24}+\frac{4}{24}\)
- step4: Transform the expression:
\(\frac{3+4}{24}\)
- step5: Add the numbers:
\(\frac{7}{24}\)
Calculate or simplify the expression \( 6/10 * 120 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{6}{10}\times 120\)
- step1: Reduce the fraction:
\(\frac{3}{5}\times 120\)
- step2: Reduce the numbers:
\(3\times 24\)
- step3: Multiply the numbers:
\(72\)
Calculate or simplify the expression \( 9/10 - 1/7 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{9}{10}-\frac{1}{7}\)
- step1: Reduce fractions to a common denominator:
\(\frac{9\times 7}{10\times 7}-\frac{10}{7\times 10}\)
- step2: Multiply the numbers:
\(\frac{9\times 7}{70}-\frac{10}{7\times 10}\)
- step3: Multiply the numbers:
\(\frac{9\times 7}{70}-\frac{10}{70}\)
- step4: Transform the expression:
\(\frac{9\times 7-10}{70}\)
- step5: Multiply the numbers:
\(\frac{63-10}{70}\)
- step6: Subtract the numbers:
\(\frac{53}{70}\)
Calculate or simplify the expression \( 1 + 3/5 + 3/5 \).
Calculate the value by following steps:
- step0: Calculate:
\(1+\frac{3}{5}+\frac{3}{5}\)
- step1: Reduce fractions to a common denominator:
\(\frac{5}{5}+\frac{3}{5}+\frac{3}{5}\)
- step2: Transform the expression:
\(\frac{5+3+3}{5}\)
- step3: Add the numbers:
\(\frac{11}{5}\)
Calculate or simplify the expression \( 2/5 * 45 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{2}{5}\times 45\)
- step1: Reduce the numbers:
\(2\times 9\)
- step2: Multiply the numbers:
\(18\)
Let's solve each part step by step.
### a) \( \frac{1}{8} + \frac{1}{6} \)
To add these fractions, we need a common denominator. The least common multiple of 8 and 6 is 24.
\[
\frac{1}{8} = \frac{3}{24}, \quad \frac{1}{6} = \frac{4}{24}
\]
Now we can add them:
\[
\frac{3}{24} + \frac{4}{24} = \frac{7}{24}
\]
### b) \( \frac{9}{10} - \frac{1}{7} \)
For this subtraction, we also need a common denominator. The least common multiple of 10 and 7 is 70.
\[
\frac{9}{10} = \frac{63}{70}, \quad \frac{1}{7} = \frac{10}{70}
\]
Now we can subtract:
\[
\frac{63}{70} - \frac{10}{70} = \frac{53}{70}
\]
### c) \( 1 \frac{3}{5} + \frac{3}{5} \)
First, convert the mixed number to an improper fraction:
\[
1 \frac{3}{5} = \frac{5}{5} + \frac{3}{5} = \frac{8}{5}
\]
Now add:
\[
\frac{8}{5} + \frac{3}{5} = \frac{11}{5} = 2 \frac{1}{5}
\]
### d) Fractions of numbers
#### a) \( \frac{2}{5} \text{ of } 45 \)
To find this, multiply:
\[
\frac{2}{5} \times 45 = \frac{90}{5} = 18
\]
#### b) \( \frac{6}{10} \times 120 \)
This can be simplified first:
\[
\frac{6}{10} = \frac{3}{5}
\]
Now multiply:
\[
\frac{3}{5} \times 120 = \frac{360}{5} = 72
\]
### Summary of Results
- a) \( \frac{1}{8} + \frac{1}{6} = \frac{7}{24} \)
- b) \( \frac{9}{10} - \frac{1}{7} = \frac{53}{70} \)
- c) \( 1 \frac{3}{5} + \frac{3}{5} = 2 \frac{1}{5} \)
- d)
- a) \( \frac{2}{5} \text{ of } 45 = 18 \)
- b) \( \frac{6}{10} \times 120 = 72 \)
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución