Pregunta
upstudy study bank question image url

\( \begin{array}{ll}\text { g) } \frac{-6}{x+2}-\frac{-x+3}{x}+\frac{x-1}{3 x} & \text { h) } \frac{x^{2}+7 x}{x^{2}-4}+\frac{x-3}{2-x}-\frac{5}{x+2} \\ \text { i) } \frac{x}{x-1}+\frac{x+3}{x+1}-\frac{4}{1-x^{2}} & \text { j) } \frac{a}{a x+a}-\frac{x-2}{x+1}+\frac{x+2}{x-1}\end{array} \)

Ask by Pena Sullivan. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**g)** \[ \frac{-6}{x+2} - \frac{-x + 3}{x} + \frac{x - 1}{3x} = \frac{-20x + 4x^{2} - 20}{3x^{2} + 6x} \] **h)** \[ \frac{x^{2} + 7x}{x^{2} - 4} + \frac{x - 3}{2 - x} - \frac{5}{x + 2} = \frac{3x + 16}{x^{2} - 4} \] **i)** \[ \frac{x}{x - 1} + \frac{x + 3}{x + 1} - \frac{4}{1 - x^{2}} = \frac{2x + 1}{x - 1} \] **j)** \[ \frac{a}{ax + a} - \frac{x - 2}{x + 1} + \frac{x + 2}{x - 1} = \frac{7x - 1}{x^{2} - 1} \]

Solución

Simplify the expression by following steps: - step0: Solution: \(\frac{a}{\left(ax+a\right)}-\frac{\left(x-2\right)}{\left(x+1\right)}+\frac{\left(x+2\right)}{\left(x-1\right)}\) - step1: Remove the parentheses: \(\frac{a}{ax+a}-\frac{x-2}{x+1}+\frac{x+2}{x-1}\) - step2: Divide the terms: \(\frac{1}{x+1}-\frac{x-2}{x+1}+\frac{x+2}{x-1}\) - step3: Reduce fractions to a common denominator: \(\frac{x-1}{\left(x+1\right)\left(x-1\right)}-\frac{\left(x-2\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\) - step4: Rewrite the expression: \(\frac{x-1}{\left(x+1\right)\left(x-1\right)}-\frac{\left(x-2\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\) - step5: Transform the expression: \(\frac{x-1-\left(x-2\right)\left(x-1\right)+\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\) - step6: Multiply the terms: \(\frac{x-1-\left(x^{2}-3x+2\right)+\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\) - step7: Multiply the terms: \(\frac{x-1-\left(x^{2}-3x+2\right)+x^{2}+3x+2}{\left(x+1\right)\left(x-1\right)}\) - step8: Calculate: \(\frac{7x-1}{\left(x+1\right)\left(x-1\right)}\) - step9: Multiply the terms: \(\frac{7x-1}{x^{2}-1}\) Calculate or simplify the expression \( -6/(x+2) - (-x + 3)/x + (x - 1)/(3*x) \). Simplify the expression by following steps: - step0: Solution: \(\frac{-6}{\left(x+2\right)}-\frac{\left(-x+3\right)}{x}+\frac{\left(x-1\right)}{3x}\) - step1: Remove the parentheses: \(\frac{-6}{x+2}-\frac{-x+3}{x}+\frac{x-1}{3x}\) - step2: Use the rules for multiplication and division: \(\frac{-6}{x+2}+\frac{x-3}{x}+\frac{x-1}{3x}\) - step3: Rewrite the fraction: \(-\frac{6}{x+2}+\frac{x-3}{x}+\frac{x-1}{3x}\) - step4: Reduce fractions to a common denominator: \(-\frac{6\times 3x}{\left(x+2\right)\times 3x}+\frac{\left(x-3\right)\times 3\left(x+2\right)}{x\times 3\left(x+2\right)}+\frac{\left(x-1\right)\left(x+2\right)}{3x\left(x+2\right)}\) - step5: Reorder the terms: \(-\frac{6\times 3x}{3\left(x+2\right)x}+\frac{\left(x-3\right)\times 3\left(x+2\right)}{x\times 3\left(x+2\right)}+\frac{\left(x-1\right)\left(x+2\right)}{3x\left(x+2\right)}\) - step6: Reorder the terms: \(-\frac{6\times 3x}{3\left(x+2\right)x}+\frac{\left(x-3\right)\times 3\left(x+2\right)}{3x\left(x+2\right)}+\frac{\left(x-1\right)\left(x+2\right)}{3x\left(x+2\right)}\) - step7: Rewrite the expression: \(-\frac{6\times 3x}{3\left(x+2\right)x}+\frac{\left(x-3\right)\times 3\left(x+2\right)}{3\left(x+2\right)x}+\frac{\left(x-1\right)\left(x+2\right)}{3\left(x+2\right)x}\) - step8: Transform the expression: \(\frac{-6\times 3x+\left(x-3\right)\times 3\left(x+2\right)+\left(x-1\right)\left(x+2\right)}{3\left(x+2\right)x}\) - step9: Multiply the terms: \(\frac{-18x+\left(x-3\right)\times 3\left(x+2\right)+\left(x-1\right)\left(x+2\right)}{3\left(x+2\right)x}\) - step10: Multiply the terms: \(\frac{-18x+3x^{2}-3x-18+\left(x-1\right)\left(x+2\right)}{3\left(x+2\right)x}\) - step11: Multiply the terms: \(\frac{-18x+3x^{2}-3x-18+x^{2}+x-2}{3\left(x+2\right)x}\) - step12: Calculate: \(\frac{-20x+4x^{2}-20}{3\left(x+2\right)x}\) - step13: Calculate: \(\frac{-20x+4x^{2}-20}{3x^{2}+6x}\) Calculate or simplify the expression \( x/(x - 1) + (x + 3)/(x + 1) - 4/(1 - x^2) \). Simplify the expression by following steps: - step0: Solution: \(\frac{x}{\left(x-1\right)}+\frac{\left(x+3\right)}{\left(x+1\right)}-\frac{4}{\left(1-x^{2}\right)}\) - step1: Remove the parentheses: \(\frac{x}{x-1}+\frac{x+3}{x+1}-\frac{4}{1-x^{2}}\) - step2: Rewrite the fractions: \(\frac{x}{x-1}+\frac{x+3}{x+1}+\frac{4}{-1+x^{2}}\) - step3: Factor the expression: \(\frac{x}{x-1}+\frac{x+3}{x+1}+\frac{4}{\left(x+1\right)\left(x-1\right)}\) - step4: Reduce fractions to a common denominator: \(\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x+3\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{4}{\left(x+1\right)\left(x-1\right)}\) - step5: Rewrite the expression: \(\frac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{\left(x+3\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{4}{\left(x+1\right)\left(x-1\right)}\) - step6: Transform the expression: \(\frac{x\left(x+1\right)+\left(x+3\right)\left(x-1\right)+4}{\left(x+1\right)\left(x-1\right)}\) - step7: Multiply the terms: \(\frac{x^{2}+x+\left(x+3\right)\left(x-1\right)+4}{\left(x+1\right)\left(x-1\right)}\) - step8: Multiply the terms: \(\frac{x^{2}+x+x^{2}+2x-3+4}{\left(x+1\right)\left(x-1\right)}\) - step9: Calculate: \(\frac{2x^{2}+3x+1}{\left(x+1\right)\left(x-1\right)}\) - step10: Factor the expression: \(\frac{\left(x+1\right)\left(2x+1\right)}{\left(x+1\right)\left(x-1\right)}\) - step11: Reduce the fraction: \(\frac{2x+1}{x-1}\) Calculate or simplify the expression \( (x^2 + 7*x)/(x^2 - 4) + (x - 3)/(2 - x) - 5/(x + 2) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x^{2}+7x\right)}{\left(x^{2}-4\right)}+\frac{\left(x-3\right)}{\left(2-x\right)}-\frac{5}{\left(x+2\right)}\) - step1: Remove the parentheses: \(\frac{x^{2}+7x}{x^{2}-4}+\frac{x-3}{2-x}-\frac{5}{x+2}\) - step2: Rewrite the fractions: \(\frac{x^{2}+7x}{x^{2}-4}-\frac{x-3}{-2+x}-\frac{5}{x+2}\) - step3: Factor the expression: \(\frac{x^{2}+7x}{\left(x+2\right)\left(x-2\right)}-\frac{x-3}{-2+x}-\frac{5}{x+2}\) - step4: Reduce fractions to a common denominator: \(\frac{x^{2}+7x}{\left(x+2\right)\left(x-2\right)}-\frac{\left(x-3\right)\left(x+2\right)}{\left(-2+x\right)\left(x+2\right)}-\frac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\) - step5: Rewrite the expression: \(\frac{x^{2}+7x}{\left(x+2\right)\left(x-2\right)}-\frac{\left(x-3\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\) - step6: Transform the expression: \(\frac{x^{2}+7x-\left(x-3\right)\left(x+2\right)-5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\) - step7: Multiply the terms: \(\frac{x^{2}+7x-\left(x^{2}-x-6\right)-5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\) - step8: Multiply the terms: \(\frac{x^{2}+7x-\left(x^{2}-x-6\right)-\left(5x-10\right)}{\left(x+2\right)\left(x-2\right)}\) - step9: Calculate: \(\frac{3x+16}{\left(x+2\right)\left(x-2\right)}\) - step10: Multiply the terms: \(\frac{3x+16}{x^{2}-4}\) Here are the simplified results for each expression: **g)** \[ \frac{-6}{x+2} - \frac{-x + 3}{x} + \frac{x - 1}{3x} = \frac{-20x + 4x^{2} - 20}{3x^{2} + 6x} \] **h)** \[ \frac{x^{2} + 7x}{x^{2} - 4} + \frac{x - 3}{2 - x} - \frac{5}{x + 2} = \frac{3x + 16}{x^{2} - 4} \] **i)** \[ \frac{x}{x - 1} + \frac{x + 3}{x + 1} - \frac{4}{1 - x^{2}} = \frac{2x + 1}{x - 1} \] **j)** \[ \frac{a}{ax + a} - \frac{x - 2}{x + 1} + \frac{x + 2}{x - 1} = \frac{7x - 1}{x^{2} - 1} \] If you need further assistance or explanations for any of these steps, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To tackle that expressive fraction puzzle, it’s all about finding a common denominator! For example, in the case of \(g\), the common denominator would be \(x(x+2)(3)\), allowing you to combine the fractions into one neat package. Don't forget to simplify once you’ve merged everything, because simplest form is always so much prettier! Now, for the next step, let’s think about substitutions. If you’re ever dealing with more complex algebraic fractions, consider substituting a whole expression (like \(u = x + 2\)) into your equation. It can turn an intimidating monster of an equation into something far more manageable! Keep your eyes peeled for opportunities to simplify before diving deep into calculations—making smart choices early can save you heaps of time later!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad