(a) Given that \( \beta=2+\sqrt{8} \), express \( \beta+\frac{1}{\beta} \) in the form \( a+b \sqrt{2} \), where \( a, b \), and \( c \) a the values of \( a \) and \( b \).
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
Let's calculate \( \beta + \frac{1}{\beta} \) where \( \beta = 2 + \sqrt{8} = 2 + 2\sqrt{2} \). First, we need to find \( \frac{1}{\beta} \): \[ \frac{1}{\beta} = \frac{1}{2 + 2\sqrt{2}} \] To rationalize the denominator, we multiply the numerator and the denominator by the conjugate \( 2 - 2\sqrt{2} \): \[ \frac{1}{\beta} = \frac{2 - 2\sqrt{2}}{(2 + 2\sqrt{2})(2 - 2\sqrt{2})} = \frac{2 - 2\sqrt{2}}{4 - 8} = \frac{2 - 2\sqrt{2}}{-4} = -\frac{1}{2} + \frac{1}{2}\sqrt{2} \] Now we can add \( \beta \) and \( \frac{1}{\beta} \): \[ \beta + \frac{1}{\beta} = (2 + 2\sqrt{2}) + \left(-\frac{1}{2} + \frac{1}{2}\sqrt{2}\right) \] Combine the terms: \[ = \left(2 - \frac{1}{2}\right) + \left(2\sqrt{2} + \frac{1}{2}\sqrt{2}\right) = \frac{4}{2} - \frac{1}{2} + \left(2 + \frac{1}{2}\right)\sqrt{2} \] \[ = \frac{3}{2} + \frac{5}{2}\sqrt{2} \] Thus, expressed in the form \( a + b\sqrt{2} \): \[ a = \frac{3}{2},\; b = \frac{5}{2} \]
