Responder
Here are the simplified results for each expression:
1. \( \sqrt{255^{3} p^{10}} = 255\sqrt{255} \times p^{5} \)
2. \( 202 \sqrt{323^{3} y^{10}} = 65246\sqrt{323} \times y^{5} \)
3. \( \sqrt{2} \times \sqrt{8} = 4 \)
4. \( \sqrt[10]{9 x^{10}+16 x^{10}} = 5x^{5} \)
5. \( \sqrt{3 m^{3}} \times \sqrt{27 m} = 9m^{2} \)
6. \( \frac{\sqrt{9 x^{0}}-\sqrt{4 x^{10}}}{5 x^{3}} = \frac{3-2x^{5}}{5x^{3}} \)
Solución
Simplify the expression by following steps:
- step0: Solution:
\(\sqrt{255^{3}p^{10}}\)
- step1: Rewrite the exponent:
\(\sqrt{255^{2+1}p^{10}}\)
- step2: Expand the expression:
\(\sqrt{255^{2}\times 255p^{10}}\)
- step3: Reorder the terms:
\(\sqrt{255^{2}p^{10}\times 255}\)
- step4: Use the properties of radicals:
\(\sqrt{255^{2}p^{10}}\times \sqrt{255}\)
- step5: Simplify the root:
\(255\sqrt{255}\times p^{5}\)
Calculate or simplify the expression \( \sqrt(2) * \sqrt(8) \).
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{2}\times \sqrt{8}\)
- step1: Simplify the root:
\(\sqrt{2}\times 2\sqrt{2}\)
- step2: Multiply the terms:
\(2\times 2\)
- step3: Multiply the numbers:
\(4\)
Calculate or simplify the expression \( \sqrt(9 * x^10 + 16 * x^10) \).
Simplify the expression by following steps:
- step0: Solution:
\(\sqrt{9x^{10}+16x^{10}}\)
- step1: Add the terms:
\(\sqrt{25x^{10}}\)
- step2: Transform the expression:
\(\sqrt{\left(5x^{5}\right)^{2}}\)
- step3: Simplify the root:
\(5x^{5}\)
Calculate or simplify the expression \( (\sqrt(9 * x^0) - \sqrt(4 * x^10)) / (5 * x^3) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(\sqrt{9x^{0}}-\sqrt{4x^{10}}\right)}{5x^{3}}\)
- step1: Remove the parentheses:
\(\frac{\sqrt{9x^{0}}-\sqrt{4x^{10}}}{5x^{3}}\)
- step2: Evaluate the power:
\(\frac{\sqrt{9\times 1}-\sqrt{4x^{10}}}{5x^{3}}\)
- step3: Multiply:
\(\frac{\sqrt{9}-\sqrt{4x^{10}}}{5x^{3}}\)
- step4: Simplify the root:
\(\frac{3-\sqrt{4x^{10}}}{5x^{3}}\)
- step5: Simplify the root:
\(\frac{3-2x^{5}}{5x^{3}}\)
Calculate or simplify the expression \( 202 * \sqrt(323^3 * y^10) \).
Simplify the expression by following steps:
- step0: Solution:
\(202\sqrt{323^{3}y^{10}}\)
- step1: Simplify the root:
\(202\times 323\sqrt{323}\times y^{5}\)
- step2: Multiply the numbers:
\(65246\sqrt{323}\times y^{5}\)
Calculate or simplify the expression \( \sqrt(3 * m^3) * \sqrt(27 * m) \).
Simplify the expression by following steps:
- step0: Solution:
\(\sqrt{3m^{3}}\times \sqrt{27m}\)
- step1: Simplify the root:
\(m\sqrt{3m}\times \sqrt{27m}\)
- step2: Simplify the root:
\(m\sqrt{3m}\times 3\sqrt{3m}\)
- step3: Calculate:
\(m\times 3\times 3m\)
- step4: Multiply the terms:
\(9m\times m\)
- step5: Calculate:
\(9m^{2}\)
Here are the simplified results for each expression:
1. **Expression:** \( \sqrt{255^{3} p^{10}} \)
**Simplified Result:** \( 255\sqrt{255} \times p^{5} \)
2. **Expression:** \( 202 \sqrt{323^{3} y^{10}} \)
**Simplified Result:** \( 65246\sqrt{323} \times y^{5} \)
3. **Expression:** \( \sqrt{2} \times \sqrt{8} \)
**Simplified Result:** \( 4 \)
4. **Expression:** \( \sqrt[10]{9 x^{10}+16 x^{10}} \)
**Simplified Result:** \( 5x^{5} \)
5. **Expression:** \( \sqrt{3 m^{3}} \times \sqrt{27 m} \)
**Simplified Result:** \( 9m^{2} \)
6. **Expression:** \( \frac{\sqrt{9 x^{0}}-\sqrt{4 x^{10}}}{5 x^{3}} \)
**Simplified Result:** \( \frac{3-2x^{5}}{5x^{3}} \)
If you have any further questions or need additional assistance, feel free to ask!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución