Pregunta
upstudy study bank question image url

(0) \( \sqrt{255^{3} p^{10}} \) (3) \( 202 \sqrt{323^{3} y^{10}} \) (5) \( \sqrt{2} \times \sqrt{8} \) (6) \( \sqrt[10]{9 x^{10}+16 x^{10}} \) (9) \( \sqrt{3 m^{3}} \times \sqrt{27 m} \) (11) \( \frac{\sqrt{9 x^{0}}-\sqrt{4 x^{10}}}{5 x^{3}} \)

Ask by Lynch Ford. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the simplified results for each expression: 1. \( \sqrt{255^{3} p^{10}} = 255\sqrt{255} \times p^{5} \) 2. \( 202 \sqrt{323^{3} y^{10}} = 65246\sqrt{323} \times y^{5} \) 3. \( \sqrt{2} \times \sqrt{8} = 4 \) 4. \( \sqrt[10]{9 x^{10}+16 x^{10}} = 5x^{5} \) 5. \( \sqrt{3 m^{3}} \times \sqrt{27 m} = 9m^{2} \) 6. \( \frac{\sqrt{9 x^{0}}-\sqrt{4 x^{10}}}{5 x^{3}} = \frac{3-2x^{5}}{5x^{3}} \)

Solución

Simplify the expression by following steps: - step0: Solution: \(\sqrt{255^{3}p^{10}}\) - step1: Rewrite the exponent: \(\sqrt{255^{2+1}p^{10}}\) - step2: Expand the expression: \(\sqrt{255^{2}\times 255p^{10}}\) - step3: Reorder the terms: \(\sqrt{255^{2}p^{10}\times 255}\) - step4: Use the properties of radicals: \(\sqrt{255^{2}p^{10}}\times \sqrt{255}\) - step5: Simplify the root: \(255\sqrt{255}\times p^{5}\) Calculate or simplify the expression \( \sqrt(2) * \sqrt(8) \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{2}\times \sqrt{8}\) - step1: Simplify the root: \(\sqrt{2}\times 2\sqrt{2}\) - step2: Multiply the terms: \(2\times 2\) - step3: Multiply the numbers: \(4\) Calculate or simplify the expression \( \sqrt(9 * x^10 + 16 * x^10) \). Simplify the expression by following steps: - step0: Solution: \(\sqrt{9x^{10}+16x^{10}}\) - step1: Add the terms: \(\sqrt{25x^{10}}\) - step2: Transform the expression: \(\sqrt{\left(5x^{5}\right)^{2}}\) - step3: Simplify the root: \(5x^{5}\) Calculate or simplify the expression \( (\sqrt(9 * x^0) - \sqrt(4 * x^10)) / (5 * x^3) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(\sqrt{9x^{0}}-\sqrt{4x^{10}}\right)}{5x^{3}}\) - step1: Remove the parentheses: \(\frac{\sqrt{9x^{0}}-\sqrt{4x^{10}}}{5x^{3}}\) - step2: Evaluate the power: \(\frac{\sqrt{9\times 1}-\sqrt{4x^{10}}}{5x^{3}}\) - step3: Multiply: \(\frac{\sqrt{9}-\sqrt{4x^{10}}}{5x^{3}}\) - step4: Simplify the root: \(\frac{3-\sqrt{4x^{10}}}{5x^{3}}\) - step5: Simplify the root: \(\frac{3-2x^{5}}{5x^{3}}\) Calculate or simplify the expression \( 202 * \sqrt(323^3 * y^10) \). Simplify the expression by following steps: - step0: Solution: \(202\sqrt{323^{3}y^{10}}\) - step1: Simplify the root: \(202\times 323\sqrt{323}\times y^{5}\) - step2: Multiply the numbers: \(65246\sqrt{323}\times y^{5}\) Calculate or simplify the expression \( \sqrt(3 * m^3) * \sqrt(27 * m) \). Simplify the expression by following steps: - step0: Solution: \(\sqrt{3m^{3}}\times \sqrt{27m}\) - step1: Simplify the root: \(m\sqrt{3m}\times \sqrt{27m}\) - step2: Simplify the root: \(m\sqrt{3m}\times 3\sqrt{3m}\) - step3: Calculate: \(m\times 3\times 3m\) - step4: Multiply the terms: \(9m\times m\) - step5: Calculate: \(9m^{2}\) Here are the simplified results for each expression: 1. **Expression:** \( \sqrt{255^{3} p^{10}} \) **Simplified Result:** \( 255\sqrt{255} \times p^{5} \) 2. **Expression:** \( 202 \sqrt{323^{3} y^{10}} \) **Simplified Result:** \( 65246\sqrt{323} \times y^{5} \) 3. **Expression:** \( \sqrt{2} \times \sqrt{8} \) **Simplified Result:** \( 4 \) 4. **Expression:** \( \sqrt[10]{9 x^{10}+16 x^{10}} \) **Simplified Result:** \( 5x^{5} \) 5. **Expression:** \( \sqrt{3 m^{3}} \times \sqrt{27 m} \) **Simplified Result:** \( 9m^{2} \) 6. **Expression:** \( \frac{\sqrt{9 x^{0}}-\sqrt{4 x^{10}}}{5 x^{3}} \) **Simplified Result:** \( \frac{3-2x^{5}}{5x^{3}} \) If you have any further questions or need additional assistance, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

When simplifying expressions involving square roots, it helps to remember that you can break down the numbers under the square root into their prime factors. This can often make it easier to pull out perfect squares, which can greatly simplify your calculations. For example, \( \sqrt{8} \) is \( \sqrt{4 \times 2} \), which simplifies to \( 2\sqrt{2} \). In mathematics, especially algebra, a common mistake is forgetting to account for coefficients or variables when simplifying. For instance, when working with \( \sqrt{a^2} \), many students mistakenly simplify it to just \( a \) without considering if \( a \) could be negative, which leads to losing the negative root. Always keep in mind the absolute value when dealing with square roots!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad