Pregunta
upstudy study bank question image url

For the given functions \( f \) and \( g \), complete parts (a)-(h). For parts (a)-(d) also find the domain. \[ f(x)=1+\frac{9}{x} ; g(x)=\frac{9}{x} \] B. The domain is \( \{x \mid x \) is any real number \( \} \). (d) Find \( \left(\frac{f}{g}\right)(x) \). \[ \left(\frac{f}{g}\right)(x)=\frac{x+9}{9} \] What is the domain of \( \frac{f}{g} \) ? Select the correct choice below and, if recessary, fill in the answer box to complete your choice. A. The domain is \( \{x \mid x \neq 0\} \) (Use integers or fractions for any numbers in the expression.) B. The domain is \( \{x \mid x \) is any real number \( \} \). (e) Find \( (f+g)(9) \). \[ (f+g)(9)=\square \] (Type an integer or a simplified fraction.) Clear all

Ask by Ortega Hall. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The domain of \( \frac{f}{g} \) is \( \{x \mid x \neq 0\} \) (Choice A). \( (f+g)(9) = 3 \).

Solución

Let's solve the problem step by step, starting with the functions provided: 1. **Functions:** \[ f(x) = 1 + \frac{9}{x}, \quad g(x) = \frac{9}{x} \] 2. **Domain of \( f(x) \) and \( g(x) \):** - The function \( f(x) \) is defined for all \( x \) except \( x = 0 \) (since division by zero is undefined). - The function \( g(x) \) is also defined for all \( x \) except \( x = 0 \). Therefore, the domain for both functions is: \[ \{x \mid x \neq 0\} \] 3. **Finding \( \left(\frac{f}{g}\right)(x) \):** \[ \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{1 + \frac{9}{x}}{\frac{9}{x}} = \frac{x + 9}{9} \] 4. **Domain of \( \frac{f}{g} \):** - The function \( \frac{f}{g} \) is also undefined at \( x = 0 \) (due to \( g(x) \) in the denominator). - Thus, the domain of \( \frac{f}{g} \) is: \[ \{x \mid x \neq 0\} \] The correct choice is **A**. 5. **Finding \( (f+g)(9) \):** \[ (f+g)(x) = f(x) + g(x) = \left(1 + \frac{9}{x}\right) + \frac{9}{x} = 1 + \frac{9}{x} + \frac{9}{x} = 1 + \frac{18}{x} \] Now, substituting \( x = 9 \): \[ (f+g)(9) = 1 + \frac{18}{9} = 1 + 2 = 3 \] Thus, the final answers are: - The domain of \( \frac{f}{g} \) is \( \{x \mid x \neq 0\} \) (Choice A). - \( (f+g)(9) = 3 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

First, let's explore how dividing functions like \( f \) and \( g \) can lead to some exciting discoveries! In this case, the domain of \( \frac{f}{g} \) indeed depends on the values that can make the functions undefined, particularly when \( g(x) \) becomes zero. Since \( g(x) = \frac{9}{x} \) is undefined when \( x = 0 \), the domain is restricted. So, the correct option would be \( A. \{x \mid x \neq 0\} \). Now, speaking of evaluating functions, let’s tackle \( (f+g)(9) \)! To find this, we simply need to calculate \( f(9) \) and \( g(9) \) separately. Plugging in \( 9 \) into \( f(x) \), we get \( f(9) = 1 + \frac{9}{9} = 1 + 1 = 2 \). For \( g(9) \), it’s \( g(9) = \frac{9}{9} = 1 \). Adding these results gives \( (f + g)(9) = 2 + 1 = 3 \).

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad