Pregunta
upstudy study bank question image url

D. \( m \geq 6.3 \) Which solutions do the inequalities \( \frac{1}{2}(5 r+3) \geq 14 \) and \( -2 s+6 \geq-8 \) have in common? Show your work.

Ask by Medina Valdez. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions are: - \( r \geq 5 \) - \( s \leq 7 \)

Solución

To find the common solutions of the inequalities \( \frac{1}{2}(5r + 3) \geq 14 \) and \( -2s + 6 \geq -8 \), we will solve each inequality step by step. ### Step 1: Solve the first inequality \( \frac{1}{2}(5r + 3) \geq 14 \) 1. **Multiply both sides by 2** to eliminate the fraction: \[ 5r + 3 \geq 28 \] 2. **Subtract 3 from both sides**: \[ 5r \geq 25 \] 3. **Divide both sides by 5**: \[ r \geq 5 \] ### Step 2: Solve the second inequality \( -2s + 6 \geq -8 \) 1. **Subtract 6 from both sides**: \[ -2s \geq -14 \] 2. **Divide both sides by -2** (remember to reverse the inequality sign): \[ s \leq 7 \] ### Step 3: Determine the common solutions Now we have the solutions: - For \( r \): \( r \geq 5 \) - For \( s \): \( s \leq 7 \) Since the inequalities involve different variables \( r \) and \( s \), we cannot find a common solution in the traditional sense. However, we can express the solution set for each variable: - The solution for \( r \) is \( r \in [5, \infty) \). - The solution for \( s \) is \( s \in (-\infty, 7] \). ### Conclusion The inequalities do not have a common solution in terms of a single variable, but the solution sets are: - \( r \geq 5 \) - \( s \leq 7 \) These represent the ranges of values for \( r \) and \( s \) that satisfy their respective inequalities.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the common solutions of the inequalities \( \frac{1}{2}(5 r+3) \geq 14 \) and \( -2 s + 6 \geq -8 \), we'll solve each inequality step-by-step. **Step 1: Solve the first inequality \( \frac{1}{2}(5 r + 3) \geq 14 \)** 1. Multiply both sides by 2 to eliminate the fraction: \[ 5 r + 3 \geq 28 \] 2. Subtract 3 from both sides: \[ 5 r \geq 25 \] 3. Divide by 5: \[ r \geq 5 \] **Step 2: Solve the second inequality \( -2 s + 6 \geq -8 \)** 1. Subtract 6 from both sides: \[ -2 s \geq -14 \] 2. Divide by -2 (remember to flip the inequality sign): \[ s \leq 7 \] Now we combine the solutions. The first inequality gives \( r \geq 5 \), meaning \( r \) can take values starting from 5 and going upwards. The second inequality implies \( s \leq 7 \), meaning \( s \) can take values starting from negative infinity and up to 7. **Step 3: Conclusion** The solutions to the inequalities are \( r \geq 5 \) and \( s \leq 7 \). There are no variables in common to equate directly since one inequality is related to \( r \) and the other to \( s\). Their solutions represent ranges in different dimensions, so they do not intersect in a way that yields common values for a single variable.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad