Pregunta
upstudy study bank question image url

You want to be able to withdraw \( \$ 50,000 \) from your account each year for 30 years after you retire. You expect to retire in 25 years. If your account earns \( 10 \% \) interest, how much will you need to deposit each year until retirement to achieve your retirement goals? \( \$ \) Round your answer to the nearest cent.

Ask by Pearson Simpson. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

You need to deposit approximately \$4,792.30 each year until retirement to achieve your retirement goals.

Solución

We will solve the problem in two steps: Step 1. Determine how much you need at retirement (in 25 years) so that you can withdraw $50,000 a year for 30 years. At retirement, the $50,000 withdrawals form an annuity with a 10% annual interest rate. The present value (at the retirement date) of an annuity that pays R dollars for n years at interest rate r is given by   PV = R × [1 – (1 + r)^(–n)] / r. Here, R = 50,000, n = 30, and r = 0.10. Thus, the amount needed at retirement is   PV_retirement = 50,000 × [1 – (1.1)^(–30)] / 0.10. Calculating the factor:   (1.1)^(30) ≈ 17.4494  ⇒  (1.1)^(–30) ≈ 1/17.4494 ≈ 0.0573.   Then 1 – 0.0573 ≈ 0.9427.   Divide by 0.10: 0.9427 / 0.10 = 9.427. Now multiply by 50,000:   PV_retirement ≈ 50,000 × 9.427 ≈ 471,350 dollars. Step 2. Find the annual deposit d over the next 25 years that will accumulate to this amount, given that the account earns 10% per year. When making annual deposits (at the end of each year), the future value of these deposits in 25 years is given by   FV = d × [(1 + r)^(n) – 1] / r. Here, FV = 471,350, r = 0.10, and n = 25. Substitute and solve for d:   d = FV × (r) / [(1.1)^(25) – 1]. First, calculate (1.1)^(25):   (1.1)^(25) ≈ 10.8347. So,   (1.1)^(25) – 1 ≈ 10.8347 – 1 = 9.8347, and dividing by r:   [(1.1)^(25) – 1] / 0.10 = 9.8347 / 0.10 = 98.347. Now, solving for d:   d ≈ 471,350 / 98.347 ≈ 4,792.30 dollars. Thus, you will need to deposit approximately $4,792.30 each year for 25 years to reach your retirement goal.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To figure out how much you'll need to deposit each year until retirement to withdraw \( \$ 50,000 \) for 30 years, we first calculate the present value of those \( \$ 50,000 \) withdrawals using the formula for the present value of an annuity: \[ PV = P \times \left(\frac{1 - (1 + r)^{-n}}{r}\right) \] where: - \( P = \$ 50,000 \) (annual withdrawal), - \( r = 0.10 \) (annual interest rate), - \( n = 30 \) (total withdrawals). Plugging in the values: \[ PV = 50,000 \times \left(\frac{1 - (1 + 0.10)^{-30}}{0.10}\right) \approx 50,000 \times 9.64629 \approx 482,314.50 \] This means you will need approximately \( \$ 482,314.50 \) at the start of your retirement. Next, we need to determine how much to save each year for the next 25 years to reach that amount. We can use the future value of an annuity formula: \[ FV = C \times \left(\frac{(1 + r)^n - 1}{r}\right) \] Where: - \( FV = 482,314.50 \), - \( r = 0.10 \), - \( n = 25 \). Rearranging the formula to solve for \( C \): \[ C = \frac{FV}{\left(\frac{(1 + r)^n - 1}{r}\right)} \] Now substituting in the values: \[ C = \frac{482,314.50}{\left(\frac{(1 + 0.10)^{25} - 1}{0.10}\right)} \approx \frac{482,314.50}{(9.64571)} \approx 49,932.47 \] Thus, you need to deposit approximately \( \$ 49,932.47 \) each year until retirement. **Your answer is:** \( 49,932.47 \)

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad