Pregunta
upstudy study bank question image url

A quantity with an initial value of 7200 decays exponentially at a rate of \( 0.3 \% \) every day. What is the value of the quantity after 10 weeks, to the nearest hundredth?

Ask by Lyons Cummings. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 10 weeks, the quantity is approximately 5832.00.

Solución

The quantity decays by 0.3% each day, which means it multiplies by 0.997 every day (since 100% - 0.3% = 99.7% or 0.997 in decimal form). Step 1: Determine the number of days in 10 weeks.   10 weeks × 7 days/week = 70 days Step 2: Use the exponential decay formula:   Final amount = Initial amount × (decay factor)^(number of days)   Final amount = 7200 × (0.997)^70 Step 3: Calculate (0.997)^70.   This can be done using a calculator or logarithms:   (0.997)^70 = exp(70 × ln(0.997))   Since ln(0.997) ≈ -0.003005, then:   70 × (-0.003005) ≈ -0.21035   exp(-0.21035) ≈ 0.810 Step 4: Multiply by the initial amount:   Final amount ≈ 7200 × 0.810 = 5832 Rounded to the nearest hundredth, the value is 5832.00. Therefore, after 10 weeks, the quantity is approximately 5832.00.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the value of the quantity after 10 weeks, we first need to determine how many days that is. Since there are 7 days in a week, 10 weeks equals \( 10 \times 7 = 70 \) days. The formula for exponential decay is given by: \[ A = A_0 e^{-kt} \] where: - \( A_0 \) is the initial amount (7200), - \( k \) is the decay constant (in this case, \( 0.3\% \) per day, or \( 0.003 \) in decimal form), - \( t \) is the time in days. Plugging in the values, \[ A = 7200 e^{-0.003 \times 70} \] Calculating the exponent: \[ -0.003 \times 70 = -0.21 \] Now substituting into the equation: \[ A = 7200 e^{-0.21} \] Calculating \( e^{-0.21} \) (approximately \( 0.8107 \)): \[ A \approx 7200 \times 0.8107 \approx 5845.04 \] Thus, the value of the quantity after 10 weeks is approximately **5845.04**.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad