Pregunta
upstudy study bank question image url

19. \( f(x)=x^{3}-8 \)

Ask by Hart Mcfarlane. in the United States
Jan 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( f(x) = x^3 - 8 \) is a cubic polynomial with the following key properties: - **Roots:** - Real root at \( x = 2 \) - Complex roots at \( x = -1 + i\sqrt{3} \) and \( x = -1 - i\sqrt{3} \) - **Derivatives:** - First derivative \( f'(x) = 3x^2 \) is always non-negative, making the function monotonically increasing. - Second derivative \( f''(x) = 6x \) indicates concave up for \( x > 0 \) and concave down for \( x < 0 \), with an inflection point at \( x = 0 \). - **Graph Behavior:** - Starts at \( (-\infty, -\infty) \) and ends at \( (\infty, \infty) \). - Passes through the points \( (0, -8) \) and \( (2, 0) \). - Has an inflection point at \( (0, -8) \). Overall, \( f(x) = x^3 - 8 \) is a strictly increasing function with one real root and two complex roots, and its graph reflects its increasing nature with changes in concavity.

Solución

Certainly! Let's analyze the function \( f(x) = x^3 - 8 \) in detail. We'll explore its key properties, including factoring, roots, derivatives, and graph behavior. ## 1. **Factoring the Polynomial** The given function is a cubic polynomial. We can factor it using the **difference of cubes** formula: \[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \] Here, \( a = x \) and \( b = 2 \) (since \( 2^3 = 8 \)). Applying the formula: \[ f(x) = x^3 - 8 = (x - 2)(x^2 + 2x + 4) \] ## 2. **Finding the Roots** To find the roots of \( f(x) = 0 \), solve: \[ x^3 - 8 = 0 \quad \Rightarrow \quad x^3 = 8 \quad \Rightarrow \quad x = 2 \] So, the real root is \( x = 2 \). To find the **complex roots**, we can solve the quadratic factor: \[ x^2 + 2x + 4 = 0 \] Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2 \pm \sqrt{4 - 16}}{2} = \frac{-2 \pm \sqrt{-12}}{2} = -1 \pm i\sqrt{3} \] **Summary of Roots:** - **Real Root:** \( x = 2 \) - **Complex Roots:** \( x = -1 + i\sqrt{3} \) and \( x = -1 - i\sqrt{3} \) ## 3. **Derivatives and Critical Points** ### First Derivative \( f'(x) \) \[ f'(x) = \frac{d}{dx}(x^3 - 8) = 3x^2 \] **Analysis:** - \( f'(x) = 3x^2 \geq 0 \) for all real \( x \). - The function is **monotonically increasing** since the derivative is non-negative everywhere. - **Stationary Point:** At \( x = 0 \), \( f'(0) = 0 \). However, since the derivative does not change sign around this point, it's an inflection point rather than a local maximum or minimum. ### Second Derivative \( f''(x) \) \[ f''(x) = \frac{d}{dx}(3x^2) = 6x \] **Analysis:** - \( f''(x) = 6x \) - Concave **up** when \( x > 0 \), and concave **down** when \( x < 0 \). - **Inflection Point:** At \( x = 0 \), where the concavity changes. ## 4. **Graph Behavior** ### General Shape - **Type:** Cubic polynomial. - **Leading Term:** \( x^3 \) signifies that as \( x \to \infty \), \( f(x) \to \infty \), and as \( x \to -\infty \), \( f(x) \to -\infty \). - **Monotonicity:** Since \( f'(x) \geq 0 \) everywhere, the function is always increasing, albeit with a horizontal tangent at \( x = 0 \). ### Key Points - **Y-intercept:** Set \( x = 0 \): \[ f(0) = 0^3 - 8 = -8 \] - **X-intercept:** At \( x = 2 \), as previously determined. - **Inflection Point:** At \( x = 0 \), where the concavity changes. ### Sketch of the Graph 1. **Start at \( (-\infty, -\infty) \).** 2. **Pass through the inflection point \( (0, -8) \).** 3. **Rise smoothly to pass through \( (2, 0) \).** 4. **Continue to \( (\infty, \infty) \).** ![Graph of f(x) = x³ - 8](https://i.imgur.com/7l68uTJ.png) *(Note: For an accurate graph, consider using graphing software or tools.)* ## 5. **Summary of Properties** - **Function:** \( f(x) = x^3 - 8 \) - **Factored Form:** \( (x - 2)(x^2 + 2x + 4) \) - **Roots:** \( x = 2 \) (real), \( x = -1 \pm i\sqrt{3} \) (complex) - **First Derivative:** \( f'(x) = 3x^2 \) (always non-negative) - **Second Derivative:** \( f''(x) = 6x \) (determines concavity) - **Behavior:** Always increasing with one real root and two complex roots, passing through \( (0, -8) \) and \( (2, 0) \), with an inflection point at \( x = 0 \). If you have a specific question or aspect of \( f(x) = x^3 - 8 \) you'd like to explore further, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

The function \( f(x) = x^{3} - 8 \) is a cubic function that depicts a classic case of polynomial behavior. Interestingly, the equation can be factored using the difference of cubes formula: \( a^3 - b^3 = (a - b)(a^2 + ab + b^2) \). In this case, it becomes \( (x - 2)(x^{2} + 2x + 4) \), showcasing one real root at \( x = 2 \) and two complex roots, making it a fascinating study in algebra! In real-world applications, such cubic functions can represent various scenarios, from physics equations involving volume and displacement to economics models where profit might be calculated as a function of cubic relationships in production. Understanding how to analyze and graph these functions can help you visualize critical points like local minima and maxima, making it easier to tackle real-life problems!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad