Pregunta
upstudy study bank question image url

5. There are 30 vehicles consisting of motorcycles and cars in parking lot, the total amount of wheels of vehicles in the parking lot is 96 . If one car is charged Rp 3.500 .00 and motorcycles charged at Rp \( 2.000,00 \), the amount of money received is ...

Ask by Haynes Marsh. in Indonesia
Nov 29,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The total amount of money received is Rp 87,000.

Solución

Let's denote the number of motorcycles as \( m \) and the number of cars as \( c \). Given: 1. Total number of vehicles: \( m + c = 30 \) 2. Total number of wheels: \( 2m + 4c = 96 \) 3. Cost of one car: Rp 3,500 4. Cost of one motorcycle: Rp 2,000 We need to find the total amount of money received. Let's solve the system of equations to find the values of \( m \) and \( c \), and then calculate the total amount of money received. Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}m+c=30\\2m+4c=96\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}c=30-m\\2m+4c=96\end{array}\right.\) - step2: Substitute the value of \(c:\) \(2m+4\left(30-m\right)=96\) - step3: Simplify: \(-2m+120=96\) - step4: Move the constant to the right side: \(-2m=96-120\) - step5: Subtract the numbers: \(-2m=-24\) - step6: Change the signs: \(2m=24\) - step7: Divide both sides: \(\frac{2m}{2}=\frac{24}{2}\) - step8: Divide the numbers: \(m=12\) - step9: Substitute the value of \(m:\) \(c=30-12\) - step10: Simplify: \(c=18\) - step11: Calculate: \(\left\{ \begin{array}{l}c=18\\m=12\end{array}\right.\) - step12: Check the solution: \(\left\{ \begin{array}{l}c=18\\m=12\end{array}\right.\) - step13: Rewrite: \(\left(c,m\right) = \left(18,12\right)\) The solution to the system of equations is \( c = 18 \) and \( m = 12 \). Now, let's calculate the total amount of money received: 1. Total number of cars: \( c = 18 \) 2. Total number of motorcycles: \( m = 12 \) The total amount of money received is: \[ 18 \times 3,500 + 12 \times 2,000 = 63,000 + 24,000 = 87,000 \] Therefore, the total amount of money received is Rp 87,000.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve this dilemma, let's set up a couple of equations! If we let \( x \) be the number of cars and \( y \) be the number of motorcycles, we have: 1. \( x + y = 30 \) (the total number of vehicles) 2. \( 4x + 2y = 96 \) (the total number of wheels) By solving these, we discover there are 12 cars and 18 motorcycles. Now, the revenue can be calculated: the cars would bring in \( 12 \times 3500 = Rp 42,000 \) and the motorcycles would contribute \( 18 \times 2000 = Rp 36,000 \). So, the total revenue is Rp 78,000! Now that's a win for the parking lot! For a deeper dive into this type of problem, you might explore systems of equations and their applications in real-world scenarios, such as optimizing resources or budgeting. Another fascinating angle is how similar logical puzzles are used in game design and AI programming, making them not just brain-teasers but also powerful tools in technology!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad