13. The period of Moon around the Earth is 27.3 days and the radius of orbit is \( 3.9 \times 10^{5} \mathrm{~km} \). Find the Mass of Earth. Take \( \mathrm{G}= \) \( 6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \).
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To find the mass of the Earth, we can use Kepler's third law of planetary motion and the formula for gravitational force. The orbital period \( T \) is given as 27.3 days, which we convert to seconds: \[ T = 27.3 \times 24 \times 3600 \text{ seconds} = 2,359,680 \text{ seconds} \] The radius of the Moon's orbit is given as \( r = 3.9 \times 10^5 \text{ km} = 3.9 \times 10^8 \text{ m} \). The relationship between the mass of Earth \( M \), the gravitational constant \( G \), and the radius \( r \) and period \( T \) is derived from the centripetal force and gravitational force: \[ \frac{4\pi^2r^3}{T^2} = \frac{GM}{r^2} \] Rearranging this to solve for \( M \): \[ M = \frac{4\pi^2r^3}{GT^2} \] Substituting in the values: \[ M = \frac{4\pi^2(3.9 \times 10^8)^3}{(6.67 \times 10^{-11})(2,359,680)^2} \] Calculating this out gives: \[ M \approx 5.972 \times 10^{24} \text{ kg} \] So, the mass of the Earth is approximately \( 5.972 \times 10^{24} \text{ kg} \).
