Pregunta
upstudy study bank question image url

Use long division to find the quetient and the remainder for the following division: \( \frac{6 x^{3}-11 x^{2}+25 x-23}{3 x-4} \) a.) Quotient \( 2 x^{2}-x+7 \) Remainder. 5 b.) Quotient \( 2 x^{2}+x+7 \) Remainder. 5 c.) Quotient \( 2 x^{2}+x+7 \) Remainder. -5 (

Ask by Weaver Bryant. in the United States
Feb 16,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The quotient is \( 2x^{2} - x + 7 \) and the remainder is 5.

Solución

We want to divide  6x³ – 11x² + 25x – 23 by  3x – 4. Step 1: Divide 6x³ by 3x.  6x³ ÷ 3x = 2x². Multiply the divisor by 2x²:  2x² · (3x – 4) = 6x³ – 8x². Subtract from the original:  (6x³ – 11x²) – (6x³ – 8x²) = -3x². Bring down the next term to get:  -3x² + 25x. Step 2: Divide -3x² by 3x.  -3x² ÷ 3x = -x. Multiply the divisor by -x:  -x · (3x – 4) = -3x² + 4x. Subtract:  (-3x² + 25x) – (-3x² + 4x) = 21x. Bring down the next term to have:  21x – 23. Step 3: Divide 21x by 3x.  21x ÷ 3x = 7. Multiply the divisor by 7:  7 · (3x – 4) = 21x – 28. Subtract:  (21x – 23) – (21x – 28) = 5. Since the degree of the remainder (a constant) is less than the degree of the divisor, we have finished. The result is:  Quotient: 2x² – x + 7  Remainder: 5 Thus, the correct answer is option a.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To perform long division on \( \frac{6x^3 - 11x^2 + 25x - 23}{3x - 4} \), we start by dividing the leading term \( 6x^3 \) by \( 3x \), which gives us \( 2x^2 \). Multiplying \( 2x^2 \) by \( 3x - 4 \) gives \( 6x^3 - 8x^2 \). Subtracting this from the original polynomial leads to \( -3x^2 + 25x - 23 \). Next, we divide \( -3x^2 \) by \( 3x \) to get \( -x \) and repeat the process. Carrying on this way, we discover that the quotient is indeed \( 2x^2 + x + 7 \) with a remainder of \( -5 \). Now, if you've got a craving for some math fun, think about how long division helps illuminate many seemingly complex mathematical problems! It’s like peeling the layers off an onion—each quotient and remainder brings us closer to the answer. And remember, with practice, this method becomes as easy and satisfying as pie. Want to dive deeper? Check out books that explore polynomial long division, diving into advanced algebra or even calculus, pushing your math skills to new heights!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad