Pregunta
upstudy study bank question image url

6. Is there a vector whose direction angles are \( \frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{3} \) ?

Ask by Best Sanders. in China
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

There is no vector with direction angles \( \frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{3} \).

Solución

To determine if there is a vector whose direction angles are \( \frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{3} \), we can use the relationship between direction angles and the components of the vector. The direction angles \( \alpha, \beta, \gamma \) of a vector \( \mathbf{v} = (v_1, v_2, v_3) \) are related to the components of the vector by the following equations: \[ \cos(\alpha) = \frac{v_1}{|\mathbf{v}|}, \quad \cos(\beta) = \frac{v_2}{|\mathbf{v}|}, \quad \cos(\gamma) = \frac{v_3}{|\mathbf{v}|} \] where \( |\mathbf{v}| \) is the magnitude of the vector given by: \[ |\mathbf{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2} \] The direction angles must satisfy the following condition: \[ \cos^2(\alpha) + \cos^2(\beta) + \cos^2(\gamma) = 1 \] Let's calculate \( \cos(\alpha) \), \( \cos(\beta) \), and \( \cos(\gamma) \) for the given angles: 1. \( \alpha = \frac{\pi}{4} \) \[ \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \] 2. \( \beta = \frac{\pi}{4} \) \[ \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \] 3. \( \gamma = \frac{\pi}{3} \) \[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] Now, we can substitute these values into the condition: \[ \cos^2\left(\frac{\pi}{4}\right) + \cos^2\left(\frac{\pi}{4}\right) + \cos^2\left(\frac{\pi}{3}\right) = \left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{1}{2}\right)^2 \] Calculating each term: \[ \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{2}{4} = \frac{1}{2} \] \[ \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] Now, summing these: \[ \frac{1}{2} + \frac{1}{2} + \frac{1}{4} = 1 + \frac{1}{4} = \frac{5}{4} \] Since \( \frac{5}{4} \neq 1 \), the condition is not satisfied. Therefore, there is no vector whose direction angles are \( \frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{3} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine if there is a vector with direction angles of \( \frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{3} \), we can use the relationship between direction angles and the cosine of those angles. The direction cosines \( l, m, n \) can be calculated as: \[ l = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, \quad m = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, \quad n = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}. \] Now, according to the property of direction cosines, they must satisfy the equation: \[ l^2 + m^2 + n^2 = 1. \] Calculating this gives: \[ \left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{2}{4} + \frac{2}{4} + \frac{1}{4} = \frac{5}{4}. \] Since \( \frac{5}{4} \neq 1 \), there is no vector whose direction angles are \( \frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{3} \).

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad