6. Is there a vector whose direction angles are \( \frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{3} \) ?
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To determine if there is a vector with direction angles of \( \frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{3} \), we can use the relationship between direction angles and the cosine of those angles. The direction cosines \( l, m, n \) can be calculated as: \[ l = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, \quad m = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, \quad n = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}. \] Now, according to the property of direction cosines, they must satisfy the equation: \[ l^2 + m^2 + n^2 = 1. \] Calculating this gives: \[ \left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{2}{4} + \frac{2}{4} + \frac{1}{4} = \frac{5}{4}. \] Since \( \frac{5}{4} \neq 1 \), there is no vector whose direction angles are \( \frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{3} \).
