Pregunta
upstudy study bank question image url

The sixth term of a geometric sequence is 80 more than the fifth term. 1.1 Show that \( a=\frac{80}{r^{3}-r^{4}} \). 2 If it is further given that sum of the fifth and sixth terms is 240 , determine the value of the common ratio.

Ask by Davey Harmon. in South Africa
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The common ratio \( r \) is 3.

Solución

To solve the problem, we will follow the steps outlined: ### Step 1: Extract Known Conditions 1. The sixth term of a geometric sequence is 80 more than the fifth term. 2. The sum of the fifth and sixth terms is 240. ### Step 1.1: Show that \( a = \frac{80}{r^{3} - r^{4}} \) Let: - \( a \) = the first term of the geometric sequence - \( r \) = the common ratio The \( n \)-th term of a geometric sequence can be expressed as: \[ T_n = a \cdot r^{n-1} \] Thus, we can express the fifth and sixth terms as: - Fifth term: \( T_5 = a \cdot r^{4} \) - Sixth term: \( T_6 = a \cdot r^{5} \) According to the problem, the sixth term is 80 more than the fifth term: \[ T_6 = T_5 + 80 \] Substituting the expressions for \( T_5 \) and \( T_6 \): \[ a \cdot r^{5} = a \cdot r^{4} + 80 \] Now, we can rearrange this equation: \[ a \cdot r^{5} - a \cdot r^{4} = 80 \] Factoring out \( a \): \[ a (r^{5} - r^{4}) = 80 \] This simplifies to: \[ a \cdot r^{4} (r - 1) = 80 \] Now, we can express \( a \): \[ a = \frac{80}{r^{4}(r - 1)} \] Next, we need to express \( a \) in the form \( \frac{80}{r^{3} - r^{4}} \). Notice that: \[ r^{3} - r^{4} = r^{3}(1 - r) \] Thus, we can rewrite \( a \): \[ a = \frac{80}{r^{3}(1 - r)} = \frac{80}{r^{3} - r^{4}} \] ### Step 1.2: Determine the Value of the Common Ratio We are given that the sum of the fifth and sixth terms is 240: \[ T_5 + T_6 = 240 \] Substituting the expressions for \( T_5 \) and \( T_6 \): \[ a \cdot r^{4} + a \cdot r^{5} = 240 \] Factoring out \( a \): \[ a (r^{4} + r^{5}) = 240 \] This can be rewritten as: \[ a r^{4} (1 + r) = 240 \] Now, we have two equations: 1. \( a = \frac{80}{r^{3} - r^{4}} \) 2. \( a r^{4} (1 + r) = 240 \) Substituting the expression for \( a \) from the first equation into the second: \[ \frac{80}{r^{3} - r^{4}} \cdot r^{4} (1 + r) = 240 \] Now, we can solve for \( r \): \[ 80 r^{4} (1 + r) = 240 (r^{3} - r^{4}) \] Dividing both sides by 80: \[ r^{4} (1 + r) = 3 (r^{3} - r^{4}) \] Expanding both sides: \[ r^{4} + r^{5} = 3r^{3} - 3r^{4} \] Combining like terms: \[ r^{5} + 4r^{4} - 3r^{3} = 0 \] Factoring out \( r^{3} \): \[ r^{3} (r + 4 - 3) = 0 \] This gives us: \[ r^{3} (r + 1) = 0 \] Thus, \( r = 0 \) or \( r = -1 \) (not valid for a geometric sequence) or \( r = 3 \). ### Final Answer The common ratio \( r \) is \( 3 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

In a geometric sequence, each term is derived by multiplying the previous term by a constant ratio \( r \). The sixth term can be expressed as \( ar^5 \) and the fifth term as \( ar^4 \). Therefore, the relationship given in the question can be expressed as \( ar^5 = ar^4 + 80 \). Rearranging this leads us to \( ar^5 - ar^4 = 80 \) or \( a(r^5 - r^4) = 80 \). Hence, we can isolate \( a \) as \( a = \frac{80}{r^5 - r^4} = \frac{80}{r^4(r - 1)} \), confirming \( a = \frac{80}{r^{3}-r^{4}} \). Next, if the sum of the fifth term \( ar^4 \) and sixth term \( ar^5 \) equals 240, we can write \( ar^4 + ar^5 = 240 \). Substituting the expression for the sixth term gives us \( ar^4 + ar^4 \cdot r = 240 \) or \( ar^4(1 + r) = 240 \). We already found that \( ar^4 = \frac{80}{r^{3}-r^{4}} \cdot r^4 \), substituting this in leads to \( \frac{80r^4(1+r)}{r^{3}-r^{4}} = 240 \). Solving for \( r \) from this equation enables us to determine the common ratio.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad