Graph the function \( f(x)=\left(\frac{1}{5}\right)^{x} \) by moving the key points. You can only graph integer points, for example you cannot plot the point \( \left(-1, \frac{1}{4}\right) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To graph the function \( f(x)=\left(\frac{1}{5}\right)^{x} \) using key integer points, let's start with a few calculations for integer values of \( x \): - For \( x = -2 \): \( f(-2) = \left(\frac{1}{5}\right)^{-2} = 25 \) (point: \( (-2, 25) \)) - For \( x = -1 \): \( f(-1) = \left(\frac{1}{5}\right)^{-1} = 5 \) (point: \( (-1, 5) \)) - For \( x = 0 \): \( f(0) = \left(\frac{1}{5}\right)^{0} = 1 \) (point: \( (0, 1) \)) - For \( x = 1 \): \( f(1) = \left(\frac{1}{5}\right)^{1} = \frac{1}{5} \approx 0.2 \) (point: \( (1, 0) \)) (not an integer point, so we can skip) - For \( x = 2 \): \( f(2) = \left(\frac{1}{5}\right)^{2} = \frac{1}{25} \approx 0.04 \) (also not an integer point) Thus, the key integer points to graph will be \( (-2, 25) \), \( (-1, 5) \), and \( (0, 1) \). Plot these on a coordinate plane, noting that the function decreases sharply as \( x \) increases, approaching the x-axis but never touching it, creating an exponential decay curve. To better visualize, connect the points smoothly, making sure to reflect the rapid decrease toward the right of the graph while keeping it positive. The y-values become smaller as the x-values increase.
