Pregunta
upstudy study bank question image url

Emma is going to invest in an account paying an interest rate of \( 5.5 \% \) compounded annually. How much would Emma need to invest, to the nearest hundred dollars, for the value of the account to reach \( \$ 480 \) in 8 years?

Ask by Davey Gonzalez. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Emma needs to invest approximately $300 now to reach $480 in 8 years with a 5.5% annual interest rate.

Solución

To determine how much Emma should invest now so that her account is worth $480 in 8 years with an annual compound interest rate of 5.5%, we start with the compound interest formula:   A = P × (1 + r)^t Here,   A is the future amount ($480),   P is the principal (the amount to invest now),   r is the annual interest rate (5.5% or 0.055), and   t is the number of years (8). Plug in the values:   480 = P × (1.055)^8 To solve for P, rearrange the equation:   P = 480 / (1.055)^8 Calculating (1.055)^8 (using either a calculator or exponential estimation) gives approximately 1.534. So:   P ≈ 480 / 1.534 ≈ 312.75 Since the problem asks for an answer "to the nearest hundred dollars," we round 312.75 to the nearest hundred, which is $300. Therefore, Emma needs to invest about $300.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find out how much Emma needs to invest now, we can use the formula for compound interest: \[ A = P(1 + r)^n \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of years the money is invested. In this case, \( A = 480 \), \( r = 0.055 \), and \( n = 8 \). Rearranging the formula to solve for \( P \): \[ P = \frac{A}{(1 + r)^n} = \frac{480}{(1 + 0.055)^8} \] Calculating \( (1 + 0.055)^8 \): Calculating \( (1.055)^8 \) gives approximately \( 1.48024 \). Substituting back into the equation: \[ P = \frac{480}{1.48024} \approx 324.35 \] Rounding to the nearest hundred dollars, Emma would need to invest approximately \( \$ 300 \). If you round more precisely, you can recognize that Emma would need to set aside a little extra cushion, just in case hey? So let’s keep it around $300—because it’s safer with investments!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad