5. The range of temperatures, in \( { }^{\circ} \mathrm{F} \), for a winter sleeping bag is represented by the equation shown. \( |x-2|-7=-3 \) Solve to find the minimum and maximum temperatures. \( \min =\square{ }^{\circ} \mathrm{F}, \max =\square{ }^{\circ} \mathrm{F} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To solve the equation \( |x-2|-7=-3 \), first, isolate the absolute value: \[ |x-2| = 4. \] This gives you two scenarios to consider: 1. \( x-2 = 4 \) leads to \( x = 6 \), 2. \( x-2 = -4 \) leads to \( x = -2 \). So, the minimum temperature is \(-2^{\circ} \mathrm{F}\) and the maximum is \(6^{\circ} \mathrm{F}\); thus, \( \min = -2^{\circ} \mathrm{F}, \max = 6^{\circ} \mathrm{F} \). Imagine snuggling into your cozy bag at -2°F—it’s like your very own icy fortress! But peeking out to a comfy 6°F gives a warmth that makes you want to enjoy a snowy morning with a cup of cocoa. Now, safety first; just make sure your gear can handle those chilly extremes!
