Pregunta

Find the area between the curves \( y = x^2 \) and \( y = 4 - x^2 \) from \( x = -2 \) to \( x = 2 \).

Ask by Hamilton Wilson. in Nigeria
Jan 11,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The area between the curves \( y = x^2 \) and \( y = 4 - x^2 \) from \( x = -2 \) to \( x = 2 \) is \( \frac{16}{3} \) or approximately \( 5.\dot{3} \).

Solución

To find the area between the curves \( y = x^2 \) and \( y = 4 - x^2 \) from \( x = -2 \) to \( x = 2 \), we need to integrate the difference between the two functions over the given interval. The area between the curves can be calculated using the formula: \[ \text{Area} = \int_{a}^{b} (f(x) - g(x)) \, dx \] In this case, \( f(x) = 4 - x^2 \) and \( g(x) = x^2 \). The interval is from \( x = -2 \) to \( x = 2 \). Therefore, the area between the curves can be calculated as: \[ \text{Area} = \int_{-2}^{2} ((4 - x^2) - x^2) \, dx \] Let's simplify the expression inside the integral: \[ \text{Area} = \int_{-2}^{2} (4 - 2x^2) \, dx \] Now, we can calculate the integral to find the area between the curves. Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int_{-2}^{2} 4-2x^{2} dx\) - step1: Evaluate the integral: \(\int 4-2x^{2} dx\) - step2: Use properties of integrals: \(\int 4 dx+\int -2x^{2} dx\) - step3: Evaluate the integral: \(4x+\int -2x^{2} dx\) - step4: Evaluate the integral: \(4x-\frac{2x^{3}}{3}\) - step5: Return the limits: \(\left(4x-\frac{2x^{3}}{3}\right)\bigg |_{-2}^{2}\) - step6: Calculate the value: \(\frac{16}{3}\) The area between the curves \( y = x^2 \) and \( y = 4 - x^2 \) from \( x = -2 \) to \( x = 2 \) is \( \frac{16}{3} \) or \( 5\frac{1}{3} \) or \( 5.\dot{3} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the area between the curves \( y = x^2 \) and \( y = 4 - x^2 \) from \( x = -2 \) to \( x = 2 \), we first need to determine where these two curves intersect. We set the equations equal to each other: \[ x^2 = 4 - x^2 \] Combining like terms, we get: \[ 2x^2 = 4 \] Dividing both sides by 2: \[ x^2 = 2 \] Taking the square root of both sides gives us the x-coordinates of the points of intersection: \[ x = \pm \sqrt{2} \] Next, we can set up the integral for the area between the curves. The upper curve is \( y = 4 - x^2 \) and the lower curve is \( y = x^2 \). We can write the area \( A \) as: \[ A = \int_{-2}^{2} \left( (4 - x^2) - (x^2) \right) \, dx \] This simplifies to: \[ A = \int_{-2}^{2} (4 - 2x^2) \, dx \] Now, we can compute the integral: \[ A = \int_{-2}^{2} 4 \, dx - \int_{-2}^{2} 2x^2 \, dx \] Calculating each integral: 1. For \( \int_{-2}^{2} 4 \, dx \): \[ = 4[x]_{-2}^{2} = 4(2 - (-2)) = 4(4) = 16 \] 2. For \( \int_{-2}^{2} 2x^2 \, dx \): \[ = 2 \left[ \frac{x^3}{3} \right]_{-2}^{2} = 2 \left( \frac{(2)^3}{3} - \frac{(-2)^3}{3} \right) = 2 \left( \frac{8}{3} - \frac{-8}{3} \right) = 2 \left( \frac{16}{3} \right) = \frac{32}{3} \] Now, substituting back into our area calculation: \[ A = 16 - \frac{32}{3} \] To combine these, we convert 16 to a fraction with a denominator of 3: \[ = \frac{48}{3} - \frac{32}{3} = \frac{16}{3} \] Thus, the area between the curves \( y = x^2 \) and \( y = 4 - x^2 \) from \( x = -2 \) to \( x = 2 \) is: \[ \boxed{\frac{16}{3}} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad