Multiply the radical expression. Express numb \( (\sqrt{u}-9)(\sqrt{u}-8)=\square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To multiply the radical expression \( (\sqrt{u}-9)(\sqrt{u}-8) \), you can use the distributive property (also known as the FOIL method). This means you'll multiply each term in the first expression by each term in the second expression: 1. \( \sqrt{u} \times \sqrt{u} = u \) 2. \( \sqrt{u} \times (-8) = -8\sqrt{u} \) 3. \( (-9) \times \sqrt{u} = -9\sqrt{u} \) 4. \( (-9) \times (-8) = 72 \) Now, combine these results: \( u - 8\sqrt{u} - 9\sqrt{u} + 72 = u - 17\sqrt{u} + 72 \) So, the expression simplifies to: \( \boxed{u - 17\sqrt{u} + 72} \)
