Pregunta

QUESTION 7 [12) 7.1 Consider the geometric sequence: \( 4 ;-2 ; 1 \)... 7.1.1 Determine the next term of the sequence. 7.1.2 Determine \( n \) if the \( n^{\text {th }} \) term is \( \frac{1}{64} \ \). (2) 7.1.3 Calculate the sum to infinity of the series \( 4-2+1 \ldots \) (4) 7.2 If \( x \) is a real number, show that the following sequence can NOT be geometric: \( 1 ; x+1 ; x-3 \ldots \) (2)

Ask by Schneider Ryan. in South Africa
Mar 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**7.1.1** The next term is \(-\frac{1}{2}\). **7.1.2** The term \( \frac{1}{64} \) is the 9th term. **7.1.3** The sum to infinity is \( \frac{8}{3} \). **7.2** The sequence cannot be geometric for any real number \( x \).

Solución

**7.1.1** The first term is \( a = 4 \) and the second term is \(-2\). Thus, the common ratio is \[ r=\frac{-2}{4}=-\frac{1}{2}. \] The next term after \(1\) is obtained by multiplying by \( r \): \[ 1 \cdot \left(-\frac{1}{2}\right)=-\frac{1}{2}. \] **7.1.2** The general term of a geometric sequence is given by \[ a_n = a\, r^{n-1}. \] Here, \( a = 4 \) and \( r = -\frac{1}{2} \). We are given \[ 4\left(-\frac{1}{2}\right)^{n-1}=\frac{1}{64}. \] Divide both sides by 4: \[ \left(-\frac{1}{2}\right)^{n-1}=\frac{1}{256}. \] Since \(\frac{1}{256}\) is positive, the exponent \( n-1 \) must be even (because a negative base raised to an even power is positive). Let \( n-1=2k \), then \[ \left(-\frac{1}{2}\right)^{2k}=\left(\frac{1}{4}\right)^k. \] So, \[ \left(\frac{1}{4}\right)^k=\frac{1}{256}. \] Recognize that \[ 256=4^4 \quad \text{so} \quad \frac{1}{256}=\frac{1}{4^4}. \] Thus, \[ \left(\frac{1}{4}\right)^k=\left(\frac{1}{4}\right)^4. \] Hence, \[ k=4 \quad \text{and} \quad n-1=8. \] Therefore, \[ n=9. \] **7.1.3** The sum to infinity for a geometric series with \(|r|<1\) is given by \[ S_{\infty}=\frac{a}{1-r}. \] Here, \( a = 4 \) and \( r=-\frac{1}{2} \). Hence, \[ S_{\infty}=\frac{4}{1-(-\frac{1}{2})}=\frac{4}{1+\frac{1}{2}}=\frac{4}{\frac{3}{2}}=\frac{8}{3}. \] **7.2** Consider the sequence: \[ 1,\quad x+1,\quad x-3,\ldots \] For a geometric sequence, the ratio between consecutive terms must be constant. The ratio from the first to the second term is: \[ r=x+1. \] The ratio from the second to the third term is: \[ r=\frac{x-3}{x+1} \quad \text{(provided } x+1\neq 0\text{)}. \] For the sequence to be geometric we require: \[ x+1=\frac{x-3}{x+1}. \] Multiply both sides by \( x+1 \) (assuming \( x\neq -1 \)): \[ (x+1)^2=x-3. \] This expands to: \[ x^2+2x+1=x-3. \] Subtract \( x-3 \) from both sides: \[ x^2+2x+1-x+3=0 \quad \Longrightarrow \quad x^2+x+4=0. \] The discriminant of this quadratic is: \[ \Delta=1^2-4(1)(4)=1-16=-15. \] Since \( \Delta<0 \), there are no real solutions for \( x \). If \( x=-1 \), then the second term becomes \( x+1=0 \) and the ratio from the first to the second term is 0, but the third term \( x-3=-4 \) does not satisfy a constant ratio. Thus, there is no real value of \( x \) that makes the sequence geometric.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the next term of the sequence \(4, -2, 1...\), we first need to determine the common ratio. The ratio from \(4\) to \(-2\) is \(-\frac{1}{2}\), and from \(-2\) to \(1\) is \(-\frac{1}{2}\) as well. So, the next term will be \(1 \times -\frac{1}{2} = -\frac{1}{2}\). Now, for the \(n^{\text{th}}\) term to equal \(\frac{1}{64}\), we use the formula for the \(n^{\text{th}}\) term of a geometric sequence: \(a_n = a_1 \cdot r^{(n-1)}\). Here, \(a_1 = 4\) and \(r = -\frac{1}{2}\). Setting \(4 \cdot (-\frac{1}{2})^{(n-1)} = \frac{1}{64}\), we solve for \(n\) to find that the \(n^{\text{th}}\) term occurs at \(n = 7\). As for the sum to infinity of the series \(4 - 2 + 1 \ldots\), since the common ratio \(r = -\frac{1}{2}\) is not between \(-1\) and \(1\), the series converges. The sum to infinity can be calculated using the formula \(S_\infty = \frac{a_1}{1 - r}\), which gives us \(S_\infty = \frac{4}{1 - (-\frac{1}{2})} = \frac{4}{\frac{3}{2}} = \frac{8}{3}\). To show that the sequence \(1, x+1, x-3\) cannot be geometric, we must consider the condition that the ratios of consecutive terms must be equal. Formulating the ratios, we find that for the sequence to be geometric, \(\frac{x+1}{1} = \frac{x-3}{x+1}\). Cross-multiplying and simplifying leads us to a quadratic equation that can't yield a consistent solution for all values of \(x\). Therefore, this sequence cannot satisfy the properties of a geometric sequence.

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad