Pregunta
upstudy study bank question image url

There are only crange marbles and blue marbles in a bag. There are 6 arange marbles and 4 blue marbles. Lidija fakes a marble from the bag at random. She puts the marble back in the bag She then takes at random another marble from the bag. What is the probability of not choosing a blue marble from the bag? TIP: You need to construct a tree diagram and use it to calculate the probability for this event. INSTRUCTION: Your answer must be a fraction in its lowest terms. Answer: The probability of not choosing a blue marble from the bag is

Ask by Murphy Herrera. in South Africa
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability of not choosing a blue marble from the bag is \( \frac{9}{25} \).

Solución

We have a bag with 6 orange marbles and 4 blue marbles (total = 10 marbles). Lidija draws a marble, replaces it, and then draws another marble. To find the probability of not choosing a blue marble (i.e., choosing an orange marble on each draw), follow these steps: Step 1. Construct the tree diagram.   • First Draw:     – Probability of drawing an orange marble = 6/10     – Probability of drawing a blue marble = 4/10   • Second Draw (since the marble is replaced, probabilities remain the same):     – After drawing an orange marble first:       ◦ Orange: 6/10       ◦ Blue: 4/10     – After drawing a blue marble first:       ◦ Orange: 6/10       ◦ Blue: 4/10 The tree diagram outcomes and their probabilities are:   1. Orange then Orange = (6/10) × (6/10) = 36/100   2. Orange then Blue = (6/10) × (4/10) = 24/100   3. Blue then Orange = (4/10) × (6/10) = 24/100   4. Blue then Blue = (4/10) × (4/10) = 16/100 Step 2. Identify the Event of Interest We want “not choosing a blue marble” in the entire process, which means she must pick an orange marble in both draws. This corresponds to outcome 1: Orange then Orange. Step 3. Calculate the Desired Probability Probability = 36/100 = 9/25 (after reducing by dividing numerator and denominator by 4). Therefore, the probability of not choosing a blue marble from the bag is 9/25.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve this, we can think of two draws from the bag and the total number of marbles present. There are 6 orange and 4 blue marbles, making a total of 10 marbles. 1. The probability of drawing an orange marble (not blue) on the first draw is \( \frac{6}{10} = \frac{3}{5} \). 2. The probability of drawing a blue marble on the first draw is \( \frac{4}{10} = \frac{2}{5} \). 3. Since Lidija puts the marble back, the probabilities for the second draw remain unchanged. Now, we calculate the probabilities of the different branches: - **Branch 1:** First draw orange, second draw orange: \(\frac{3}{5} \times \frac{3}{5} = \frac{9}{25}\) - **Branch 2:** First draw orange, second draw blue: \(\frac{3}{5} \times \frac{2}{5} = \frac{6}{25}\) - **Branch 3:** First draw blue, second draw orange: \(\frac{2}{5} \times \frac{3}{5} = \frac{6}{25}\) - **Branch 4:** First draw blue, second draw blue: \(\frac{2}{5} \times \frac{2}{5} = \frac{4}{25}\) Now, if we are looking for the probability of **not** choosing a blue marble in both draws, we only consider **Branch 1** (orange, orange) and **Branch 2** (orange, blue) and **Branch 3** (blue, orange), because those involve at least one orange. But since we want the result of not picking a blue marble in any draw, we only focus on **Branch 1**. Therefore, the required probability is: \[ P(\text{not blue on both draws}) = \frac{9}{25} \] The probability of not choosing a blue marble from the bag is \(\frac{9}{25}\).

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad