Pregunta
upstudy study bank question image url

\begin{tabular}{l} lie on the perpendicular bisector of \( \overline{Q R} \) with the \\ \( \begin{array}{ll}\text { 9. } Q(-5,4), R(8,-3), S(-2,-5) \\ 5)=1\end{array} \) \\ \hline\end{tabular}

Ask by Mullins Chang. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Point S(–2, –5) is not on the perpendicular bisector of QR because it is not equidistant from Q and R and does not satisfy the bisector's equation.

Solución

We’re given two points Q(–5, 4) and R(8, –3) and a third point S(–2, –5). One common question is to determine whether S lies on the perpendicular bisector of the segment QR. (In other words, whether S is equidistant from Q and R.) We can check this in two different ways: ───────────────────────────── Method 1. Check the distances from S to Q and S to R • Find SQ:   SQ = √[ (–2 – (–5))² + (–5 – 4)² ]      = √[ (3)² + (–9)² ]      = √[ 9 + 81 ]      = √90      = 3√10 • Find SR:   SR = √[ (–2 – 8)² + (–5 – (–3))² ]      = √[ (–10)² + (–2)² ]      = √[ 100 + 4 ]      = √104      = 2√26 Since 3√10 is not equal to 2√26 (approximately 9.49 versus 10.20), S does not lie at the same distance from Q and R. Therefore, S is not on the perpendicular bisector of QR. ───────────────────────────── Method 2. Find the equation of the perpendicular bisector of QR and see if S satisfies it 1. Find the midpoint M of QR:   M = [ (–5 + 8)/2 , (4 + (–3))/2 ]     = [ 3/2 , 1/2 ] 2. Find the slope of QR:   slope of QR = (–3 – 4)/(8 – (–5)) = (–7)/13 3. The perpendicular bisector has a slope that is the negative reciprocal of –7/13:   m_perp = 13/7 4. Write the equation using point–slope form:   y – 1/2 = (13/7)(x – 3/2) 5. Test whether S(–2, –5) satisfies this equation. Substitute x = –2:   y – 1/2 = (13/7)(–2 – 3/2)       = (13/7) [ –(4/2 + 3/2) ]       = (13/7)(–7/2)       = –91/14   Then solve for y:   y = 1/2 – 91/14 = (7/14 – 91/14) = –84/14 = –6 The point calculated on the perpendicular bisector when x = –2 is (–2, –6), not (–2, –5). Hence, S does not lie on the perpendicular bisector. ───────────────────────────── Conclusion S(–2, –5) is not on the perpendicular bisector of QR because it is not equidistant from Q and R and does not satisfy the bisector’s equation.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find out if point \( S(-2,-5) \) lies on the perpendicular bisector of \( \overline{QR} \), we first need to determine the midpoint of \( \overline{QR} \) and the slope of line \( QR \). The coordinates of \( Q \) are \( (-5,4) \) and \( R \) are \( (8,-3) \). The midpoint \( M \) of \( \overline{QR} \) is found using the formula: \[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) = \left( \frac{-5 + 8}{2}, \frac{4 - 3}{2} \right) = \left( \frac{3}{2}, \frac{1}{2} \right). \] Next, we calculate the slope of \( QR \): \[ \text{slope of } QR = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 4}{8 - (-5)} = \frac{-7}{13}. \] The slope of the perpendicular bisector is the negative reciprocal, which is \( \frac{13}{7} \). Now, we use the point-slope form of the equation of a line to derive the equation of the perpendicular bisector: \[ y - y_1 = m(x - x_1) \Rightarrow y - \frac{1}{2} = \frac{13}{7}\left(x - \frac{3}{2}\right). \] This simplifies to: \[ y = \frac{13}{7}x - \frac{39}{14} + \frac{7}{14} = \frac{13}{7}x - \frac{32}{14} = \frac{13}{7}x - \frac{16}{7}. \] Finally, we check if point \( S(-2,-5) \) satisfies this equation: Substituting \( x = -2 \): \[ y = \frac{13}{7}(-2) - \frac{16}{7} = \frac{-26 - 16}{7} = \frac{-42}{7} = -6. \] Since the \( y \)-coordinate of \( S \) is \(-5\) and does not equal \(-6\), point \( S(-2,-5) \) does not lie on the perpendicular bisector of \( \overline{QR} \).

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad