Pregunta
upstudy study bank question image url

James said that \( \Delta \mathrm{JKL} \) denoted by the coordinates \( \mathrm{J}(3,5) \mathrm{K}(3,8) \mathrm{L}-4,8) \) is an isosceles triangle. Is he correc He is incorrect, because there is not enough information to determine what time of triangle it is. Yes, he is correct. He is incorrect because it is a scalene right triangle. He is incorrect. It is an equilateral triangle.

Ask by Smith Potter. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

James is incorrect because ΔJKL is a scalene right triangle.

Solución

Let's first list the coordinates of the vertices of ΔJKL: • J = (3, 5) • K = (3, 8) • L = (–4, 8) Step 1: Calculate the side lengths. • Side JK:   Distance between J(3,5) and K(3,8)   = √[(3 – 3)² + (8 – 5)²] = √[0 + 3²] = 3. • Side KL:   Distance between K(3,8) and L(–4,8)   = √[(–4 – 3)² + (8 – 8)²] = √[(-7)² + 0] = 7. • Side JL:   Distance between J(3,5) and L(–4,8)   = √[(–4 – 3)² + (8 – 5)²] = √[(-7)² + 3²] = √(49 + 9) = √58. Step 2: Examine the triangle type. • For an isosceles triangle, at least two sides must be equal in length. Here, the sides are 3, 7, and √58 (approximately 7.62), so no two sides are equal. • Notice that segment JK is vertical and segment KL is horizontal. This means they are perpendicular. Thus, the angle at vertex K is 90° and ΔJKL is a right triangle. • Since all three sides have different lengths, the triangle is scalene. Answer: James is incorrect because ΔJKL is a scalene right triangle.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine if \( \Delta \mathrm{JKL} \) is isosceles, we can find the lengths of its sides using the distance formula. The coordinates are \( \mathrm{J}(3,5) \), \( \mathrm{K}(3,8) \), and \( \mathrm{L}(-4,8) \). The distance between \( \mathrm{J} \) and \( \mathrm{K} \) is \( 3 \) (vertical distance), while the distance between \( \mathrm{K} \) and \( \mathrm{L} \) is \( 7 \) (horizontal distance), and the distance from \( \mathrm{J} \) to \( \mathrm{L} \) is calculated using the formula, resulting in approximately \( 7.07 \). Since no two sides are equal, it's not isosceles. For a fun twist, let's consider the triangle's positioning! Since points \( \mathrm{J} \) and \( \mathrm{K} \) share the same x-coordinate, the triangle is oriented vertically along the y-axis, giving it a distinctive and unique look. The contrast of a vertical base and the slanted line to point \( \mathrm{L} \) makes it a sight to behold!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad