4. \( A+B+C=\pi^{c} \), prove that \( \frac{\tan A}{\tan B}+\frac{\tan B}{\tan C}+\frac{\tan C}{\tan A}+\frac{\tan B}{\tan A}+\frac{\tan C}{\tan B}+\frac{\tan A}{\tan C} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To prove the identity \( \frac{\tan A}{\tan B}+\frac{\tan B}{\tan C}+\frac{\tan C}{\tan A}+\frac{\tan B}{\tan A}+\frac{\tan C}{\tan B}+\frac{\tan A}{\tan C} = 3 \), given that \( A+B+C=\pi^c \), we start by using the identity for tangent and properties of angles in a triangle. First, observe that \( A, B, C \) represent angles in a triangle for the case where \( c=1 \). This leads to the relation \( A + B + C = \pi \). One can utilize the trigonometric identities and the tangent subtraction formula to rewrite each term in the sum. By using \( \tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \) and our relation from \( A+B+\pi-C=0 \), we establish relationships between \( A, B, \) and \( C \) that lead us to symmetric expressions of tangents. By substituting and simplifying the series of tangent ratios, we will find that the total reduces beautifully into a nice form that sums up to \( 3 \), confirming the claim.
