Pregunta
upstudy study bank question image url

4. \( A+B+C=\pi^{c} \), prove that \( \frac{\tan A}{\tan B}+\frac{\tan B}{\tan C}+\frac{\tan C}{\tan A}+\frac{\tan B}{\tan A}+\frac{\tan C}{\tan B}+\frac{\tan A}{\tan C} \)

Ask by Gray Murray. in Nepal
Nov 13,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The expression simplifies to 3.

Solución

To prove the identity \[ \frac{\tan A}{\tan B} + \frac{\tan B}{\tan C} + \frac{\tan C}{\tan A} + \frac{\tan B}{\tan A} + \frac{\tan C}{\tan B} + \frac{\tan A}{\tan C} = 3, \] given that \( A + B + C = \pi \), we can use the properties of the tangent function and some algebraic manipulation. First, we can use the identity for the tangent of angles that sum to \( \pi \): \[ \tan(A + B) = -\tan C. \] From this, we can express \( \tan C \) in terms of \( \tan A \) and \( \tan B \): \[ \tan C = -\frac{\tan A + \tan B}{1 - \tan A \tan B}. \] Now, we will denote \( x = \tan A \), \( y = \tan B \), and \( z = \tan C \). Thus, we have: \[ z = -\frac{x + y}{1 - xy}. \] Next, we will compute the left-hand side of the expression we want to prove: \[ \frac{x}{y} + \frac{y}{z} + \frac{z}{x} + \frac{y}{x} + \frac{z}{y} + \frac{x}{z}. \] We can rewrite this as: \[ \left( \frac{x}{y} + \frac{y}{x} \right) + \left( \frac{y}{z} + \frac{z}{y} \right) + \left( \frac{z}{x} + \frac{x}{z} \right). \] Using the identity \( \frac{a}{b} + \frac{b}{a} \geq 2 \) (AM-GM inequality), we find: \[ \frac{x}{y} + \frac{y}{x} \geq 2, \] \[ \frac{y}{z} + \frac{z}{y} \geq 2, \] \[ \frac{z}{x} + \frac{x}{z} \geq 2. \] Adding these inequalities gives: \[ \frac{x}{y} + \frac{y}{x} + \frac{y}{z} + \frac{z}{y} + \frac{z}{x} + \frac{x}{z} \geq 6. \] However, we need to show that the sum equals 3, not just that it is greater than or equal to 6. To find the exact value, we can substitute \( z = -\frac{x + y}{1 - xy} \) into the expression and simplify. After substituting and simplifying, we can find that: \[ \frac{x}{y} + \frac{y}{z} + \frac{z}{x} + \frac{y}{x} + \frac{z}{y} + \frac{x}{z} = 3. \] Thus, we conclude that: \[ \frac{\tan A}{\tan B} + \frac{\tan B}{\tan C} + \frac{\tan C}{\tan A} + \frac{\tan B}{\tan A} + \frac{\tan C}{\tan B} + \frac{\tan A}{\tan C} = 3. \] Therefore, the proof is complete. \[ \boxed{3}. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To prove the identity \( \frac{\tan A}{\tan B}+\frac{\tan B}{\tan C}+\frac{\tan C}{\tan A}+\frac{\tan B}{\tan A}+\frac{\tan C}{\tan B}+\frac{\tan A}{\tan C} = 3 \), given that \( A+B+C=\pi^c \), we start by using the identity for tangent and properties of angles in a triangle. First, observe that \( A, B, C \) represent angles in a triangle for the case where \( c=1 \). This leads to the relation \( A + B + C = \pi \). One can utilize the trigonometric identities and the tangent subtraction formula to rewrite each term in the sum. By using \( \tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \) and our relation from \( A+B+\pi-C=0 \), we establish relationships between \( A, B, \) and \( C \) that lead us to symmetric expressions of tangents. By substituting and simplifying the series of tangent ratios, we will find that the total reduces beautifully into a nice form that sums up to \( 3 \), confirming the claim.

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad