Pregunta
Tell whether the function represents exponential growth or exponential decay. Identify the rate of increase or decrease and the initial amount. Then find the value of \( A \) when \( t=5 \). 21. \( A(t)=1500(0.96)^{t} \)
Ask by Perkins Vaughn. in the United States
Feb 18,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The function \( A(t) = 1500(0.96)^t \) represents exponential decay with a rate of decrease of 4%. The initial amount is 1500. When \( t = 5 \), \( A \) is approximately 1223.06.
Solución
To determine whether the function represents exponential growth or exponential decay, we need to analyze the coefficient of the exponential term.
Given function: \( A(t) = 1500(0.96)^t \)
In this function, the coefficient of the exponential term is 0.96, which is less than 1. This indicates that the function represents exponential decay.
The rate of decrease is 0.96, which means that the amount decreases by 4% each time the variable \( t \) increases by 1.
The initial amount can be found by setting \( t = 0 \):
\( A(0) = 1500(0.96)^0 = 1500 \)
Therefore, the initial amount is 1500.
To find the value of \( A \) when \( t = 5 \), we substitute \( t = 5 \) into the function:
\( A(5) = 1500(0.96)^5 \)
Now, let's calculate the value of \( A(5) \).
Calculate the value by following steps:
- step0: Calculate:
\(1500\times 0.96^{5}\)
- step1: Convert the expressions:
\(1500\left(\frac{24}{25}\right)^{5}\)
- step2: Simplify:
\(1500\times \frac{24^{5}}{25^{5}}\)
- step3: Rewrite the expression:
\(125\times 12\times \frac{24^{5}}{25^{5}}\)
- step4: Rewrite the expression:
\(5^{3}\times 12\times \frac{24^{5}}{5^{10}}\)
- step5: Reduce the numbers:
\(12\times \frac{24^{5}}{5^{7}}\)
- step6: Multiply:
\(\frac{12\times 24^{5}}{5^{7}}\)
The value of \( A \) when \( t = 5 \) is approximately 1223.0590464.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Extra Insights
The function \( A(t) = 1500(0.96)^{t} \) represents exponential decay since the base of the exponent (0.96) is less than 1. The rate of decrease is 4% per time unit (1 - 0.96 = 0.04 or 4%), and the initial amount is 1500 when \( t = 0 \). To find the value of \( A \) when \( t=5 \), substitute 5 into the function: \( A(5) = 1500(0.96)^{5} \approx 1500(0.7576) \approx 1136.4 \). So, \( A(5) \) is approximately 1136.4.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium