Pregunta
upstudy study bank question image url

Tell whether the function represents exponential growth or exponential decay. Identify the rate of increase or decrease and the initial amount. Then find the value of \( A \) when \( t=5 \). 21. \( A(t)=1500(0.96)^{t} \)

Ask by Perkins Vaughn. in the United States
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( A(t) = 1500(0.96)^t \) represents exponential decay with a rate of decrease of 4%. The initial amount is 1500. When \( t = 5 \), \( A \) is approximately 1223.06.

Solución

To determine whether the function represents exponential growth or exponential decay, we need to analyze the coefficient of the exponential term. Given function: \( A(t) = 1500(0.96)^t \) In this function, the coefficient of the exponential term is 0.96, which is less than 1. This indicates that the function represents exponential decay. The rate of decrease is 0.96, which means that the amount decreases by 4% each time the variable \( t \) increases by 1. The initial amount can be found by setting \( t = 0 \): \( A(0) = 1500(0.96)^0 = 1500 \) Therefore, the initial amount is 1500. To find the value of \( A \) when \( t = 5 \), we substitute \( t = 5 \) into the function: \( A(5) = 1500(0.96)^5 \) Now, let's calculate the value of \( A(5) \). Calculate the value by following steps: - step0: Calculate: \(1500\times 0.96^{5}\) - step1: Convert the expressions: \(1500\left(\frac{24}{25}\right)^{5}\) - step2: Simplify: \(1500\times \frac{24^{5}}{25^{5}}\) - step3: Rewrite the expression: \(125\times 12\times \frac{24^{5}}{25^{5}}\) - step4: Rewrite the expression: \(5^{3}\times 12\times \frac{24^{5}}{5^{10}}\) - step5: Reduce the numbers: \(12\times \frac{24^{5}}{5^{7}}\) - step6: Multiply: \(\frac{12\times 24^{5}}{5^{7}}\) The value of \( A \) when \( t = 5 \) is approximately 1223.0590464.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

The function \( A(t) = 1500(0.96)^{t} \) represents exponential decay since the base of the exponent (0.96) is less than 1. The rate of decrease is 4% per time unit (1 - 0.96 = 0.04 or 4%), and the initial amount is 1500 when \( t = 0 \). To find the value of \( A \) when \( t=5 \), substitute 5 into the function: \( A(5) = 1500(0.96)^{5} \approx 1500(0.7576) \approx 1136.4 \). So, \( A(5) \) is approximately 1136.4.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad