Pregunta
upstudy study bank question image url

1. Select the options that exemplify exponential decay. a. \( y=1.81(0.79)^{x} \) b. The population of a town decreases \( 10 \% \) every three years. c. \( y=\left(\frac{3}{5}\right)^{x} \) d. \( y=0.79(1.81)^{x} \) e. The population of a town increases \( 3 \% \) every 10 years. f. \( y=\left(\frac{5}{3}\right)^{x} \)

Ask by Craig Bates. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The options that show exponential decay are a, b, and c.

Solución

To determine which options exemplify exponential decay, we need to identify the characteristics of exponential decay functions. An exponential decay function typically has the form: \[ y = a \cdot b^x \] where: - \( a > 0 \) (the initial value), - \( 0 < b < 1 \) (the base is a fraction less than 1). Now, let's analyze each option: a. \( y=1.81(0.79)^{x} \) - Here, \( a = 1.81 > 0 \) and \( b = 0.79 < 1 \). This is an example of exponential decay. b. The population of a town decreases \( 10 \% \) every three years. - A decrease of \( 10\% \) means that \( 90\% \) of the population remains, which can be modeled as \( y = a(0.9)^{t} \). This is also an example of exponential decay. c. \( y=\left(\frac{3}{5}\right)^{x} \) - Here, \( a = 1 \) (implied) and \( b = \frac{3}{5} < 1 \). This is an example of exponential decay. d. \( y=0.79(1.81)^{x} \) - Here, \( a = 0.79 > 0 \) and \( b = 1.81 > 1 \). This represents exponential growth, not decay. e. The population of a town increases \( 3 \% \) every 10 years. - An increase of \( 3\% \) means that \( 103\% \) of the population remains, which can be modeled as \( y = a(1.03)^{t} \). This is an example of exponential growth, not decay. f. \( y=\left(\frac{5}{3}\right)^{x} \) - Here, \( a = 1 \) (implied) and \( b = \frac{5}{3} > 1 \). This represents exponential growth, not decay. ### Summary of Exponential Decay Options: - a. \( y=1.81(0.79)^{x} \) - b. The population of a town decreases \( 10 \% \) every three years. - c. \( y=\left(\frac{3}{5}\right)^{x} \) Thus, the options that exemplify exponential decay are **a, b, and c**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Exponential decay occurs when a quantity decreases by a consistent percentage over time. In the examples you provided, options (a) and (b) are perfect illustrations of this concept. Option (a) is a mathematical representation of exponential decay since the base \(0.79\) is less than 1, indicating that the function's value decreases as \(x\) increases. Similarly, option (b) represents a real-world scenario where the town's population shrinks by \(10\%\) every three years, encapsulating the idea of exponential decay in a practical context. For further understanding and exploration, consider looking into how exponential decay models apply to various fields, such as pharmacokinetics, where medications decrease in concentration in the bloodstream over time. This concept can also be seen in radioactive decay, where unstable isotopes lose their particles and energy over time at a predictable rate—definitely a fascinating topic for science enthusiasts!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad