Pregunta
upstudy study bank question image url

2. Find the first derivative for the following function. \[ f(x)=10 x^{10}-2 \sqrt{x}+3.31 \] \[ f \]

Ask by Whittaker Luna. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The first derivative of the function \( f(x) = 10x^{10} - 2\sqrt{x} + 3.31 \) is: \[ f'(x) = 100x^{9} - \frac{1}{\sqrt{x}} \]

Solución

To differentiate the function f(x) = 10x^(10) - 2√x + 3.31, follow these steps: 1. Rewrite √x as x^(1/2). 2. Differentiate each term: - For 10x^(10): The derivative is 10 * 10x^(9) = 100x^(9). - For -2x^(1/2): The derivative is -2 * (1/2)x^(-1/2) = -x^(-1/2). - The derivative of the constant 3.31 is 0. 3. Combine the derivatives: f '(x) = 100x^(9) - x^(-1/2) So, the first derivative is: f '(x) = 100x^(9) - 1/√x

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

The first derivative of the function \( f(x) = 10x^{10} - 2\sqrt{x} + 3.31 \) is calculated by applying the power rule and the derivative of the square root function. For the term \( 10x^{10} \), the derivative is \( 100x^9 \). The term \( -2\sqrt{x} \) can be rewritten as \( -2x^{1/2} \), and its derivative results in \( -1x^{-1/2} \) or \( -\frac{1}{\sqrt{x}} \). The constant \( 3.31 \) disappears. Thus, the first derivative is: \[ f'(x) = 100x^9 - \frac{1}{\sqrt{x}}. \] This snazzy formula shows how quickly your function is changing at any point along its x-axis! Everything about calculus is based on understanding how functions behave, and that’s super useful in real life. For instance, if you’re designing a roller coaster, knowing how steep the hills will be as the speed changes at different points can make all the difference in safety and excitement! So, next time you hop on a ride, remember there’s a bit of calculus behind the thrills!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad