Pregunta
3. \( (a-b)^{4} \) Expand and simplify the following: \( \begin{array}{llll}\text { (a) }(-2)^{3} & \text { (b) }(-2)^{4} & \text { (c) }(-2)^{3} \\ \text { (d) }-(-2)^{4} & \text { (e) }(-a)^{5} & \text { (f) }(-a)^{6} \\ \text { (g) }-(-a)^{5} & \text { (h) }-(-a)^{6} & \text { (i) }(-1)^{20} \\ \text { (j) }(-1)^{23} & \text { (k) }(-1)^{200} & \text { (l) } & (-1)^{203}\end{array} \)
Ask by Cummings Reed. in South Africa
Feb 24,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
Here are the simplified results:
- (a) \((-2)^3 = -8\)
- (b) \((-2)^4 = 16\)
- (c) \((-2)^3 = -8\)
- (d) \(-(-2)^4 = -16\)
- (e) \((-a)^5 = -a^5\)
- (f) \((-a)^6 = a^6\)
- (g) \(-(-a)^5 = a^5\)
- (h) \(-(-a)^6 = -a^6\)
- (i) \((-1)^{20} = 1\)
- (j) \((-1)^{23} = -1\)
- (k) \((-1)^{200} = 1\)
- (l) \((-1)^{203} = -1\)
Solución
Calculate the value by following steps:
- step0: Calculate:
\(\left(-1\right)^{203}\)
- step1: Evaluate the power:
\(-1\)
Calculate or simplify the expression \( (-1)^{20} \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(-1\right)^{20}\)
- step1: Evaluate the power:
\(1\)
Calculate or simplify the expression \( (-a)^6 \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(-a\right)^{6}\)
- step1: Determine the sign:
\(a^{6}\)
Calculate or simplify the expression \( (-1)^{23} \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(-1\right)^{23}\)
- step1: Evaluate the power:
\(-1\)
Calculate or simplify the expression \( -(-a)^5 \).
Simplify the expression by following steps:
- step0: Solution:
\(-\left(-a\right)^{5}\)
- step1: Determine the sign:
\(a^{5}\)
Calculate or simplify the expression \( (-2)^3 \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(-2\right)^{3}\)
- step1: Evaluate the power:
\(-2^{3}\)
- step2: Evaluate the power:
\(-8\)
Calculate or simplify the expression \( (-2)^3 \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(-2\right)^{3}\)
- step1: Evaluate the power:
\(-2^{3}\)
- step2: Evaluate the power:
\(-8\)
Calculate or simplify the expression \( (-2)^4 \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(-2\right)^{4}\)
- step1: Determine the sign:
\(2^{4}\)
- step2: Evaluate the power:
\(16\)
Calculate or simplify the expression \( -(-2)^4 \).
Calculate the value by following steps:
- step0: Calculate:
\(-\left(-2\right)^{4}\)
- step1: Evaluate the power:
\(-16\)
Calculate or simplify the expression \( -(-a)^6 \).
Simplify the expression by following steps:
- step0: Solution:
\(-\left(-a\right)^{6}\)
- step1: Determine the sign:
\(-a^{6}\)
Calculate or simplify the expression \( (-1)^{200} \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(-1\right)^{200}\)
- step1: Evaluate the power:
\(1\)
Calculate or simplify the expression \( (-a)^5 \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(-a\right)^{5}\)
- step1: Determine the sign:
\(-a^{5}\)
Let's expand and simplify the expressions step by step:
1. **Calculate \((-2)^3\)**:
\[
(-2)^3 = -2 \times -2 \times -2 = -8
\]
2. **Calculate \((-2)^4\)**:
\[
(-2)^4 = -2 \times -2 \times -2 \times -2 = 16
\]
3. **Calculate \((-2)^3\)** again (same as step 1):
\[
(-2)^3 = -8
\]
4. **Calculate \(-(-2)^4\)**:
\[
-(-2)^4 = -16
\]
5. **Calculate \((-a)^5\)**:
\[
(-a)^5 = -a^5
\]
6. **Calculate \((-a)^6\)**:
\[
(-a)^6 = a^6
\]
7. **Calculate \(-(-a)^5\)**:
\[
-(-a)^5 = a^5
\]
8. **Calculate \(-(-a)^6\)**:
\[
-(-a)^6 = -a^6
\]
9. **Calculate \((-1)^{20}\)**:
\[
(-1)^{20} = 1
\]
10. **Calculate \((-1)^{23}\)**:
\[
(-1)^{23} = -1
\]
11. **Calculate \((-1)^{200}\)**:
\[
(-1)^{200} = 1
\]
12. **Calculate \((-1)^{203}\)**:
\[
(-1)^{203} = -1
\]
### Summary of Results:
- (a) \((-2)^3 = -8\)
- (b) \((-2)^4 = 16\)
- (c) \((-2)^3 = -8\)
- (d) \(-(-2)^4 = -16\)
- (e) \((-a)^5 = -a^5\)
- (f) \((-a)^6 = a^6\)
- (g) \(-(-a)^5 = a^5\)
- (h) \(-(-a)^6 = -a^6\)
- (i) \((-1)^{20} = 1\)
- (j) \((-1)^{23} = -1\)
- (k) \((-1)^{200} = 1\)
- (l) \((-1)^{203} = -1\)
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
Let’s dive into the world of exponents and simplify each expression one by one! (a) \((-2)^{3} = -8\) (b) \((-2)^{4} = 16\) (c) \((-2)^{3} = -8\) (d) \(-(-2)^{4} = -16\) (e) \((-a)^{5} = -a^{5}\) (f) \((-a)^{6} = a^{6}\) (g) \(-(-a)^{5} = a^{5}\) (h) \(-(-a)^{6} = -a^{6}\) (i) \((-1)^{20} = 1\) (j) \((-1)^{23} = -1\) (k) \((-1)^{200} = 1\) (l) \((-1)^{203} = -1\) And there you have it! Each expression simplified, opening the door to the fascinating world of exponents!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium