Pregunta
upstudy study bank question image url

12) Graph the function \( f(x)=\left\{\begin{array}{cc}1 \text { if } x>0 \\ x+1, & \text { if } x \leq 0\end{array}\right. \)

Ask by Matthews Harper. in Qatar
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To graph the function \( f(x) \), draw a horizontal line at \( y = 1 \) for \( x > 0 \) and a line starting at (0, 1) with a slope of 1 for \( x \leq 0 \). The point (0, 1) is included as a solid dot.

Solución

To graph the function \[ f(x) = \begin{cases} 1 & \text{if } x > 0 \\ x + 1 & \text{if } x \leq 0 \end{cases} \] we will analyze each piece of the function separately. 1. **For \( x > 0 \)**: - The function is constant and equal to 1. This means that for any positive value of \( x \), the output \( f(x) \) will be 1. - On the graph, this will be a horizontal line at \( y = 1 \) starting from \( x = 0 \) and extending to the right. 2. **For \( x \leq 0 \)**: - The function is defined as \( f(x) = x + 1 \). This is a linear function with a slope of 1 and a y-intercept of 1. - To find specific points: - At \( x = 0 \): \( f(0) = 0 + 1 = 1 \) - At \( x = -1 \): \( f(-1) = -1 + 1 = 0 \) - At \( x = -2 \): \( f(-2) = -2 + 1 = -1 \) - This line will start at the point (0, 1) and will decrease as \( x \) becomes more negative. ### Steps to Graph: - Draw a horizontal line at \( y = 1 \) for \( x > 0 \). - For \( x \leq 0 \), plot the line segment starting from (0, 1) and going through the points (-1, 0) and (-2, -1). - The line for \( x \leq 0 \) will continue indefinitely to the left. ### Important Points: - The point (0, 1) is included in both pieces of the function, so it will be a solid dot. - The line for \( x + 1 \) will not be defined for \( x > 0 \). This gives you a complete picture of the function's graph. If you have graphing software or graph paper, you can plot these points and lines accordingly.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To graph the function \( f(x) \), start with the piecewise definition: for \( x > 0 \), the function output is constant at 1. This means you would draw a horizontal line at \( y = 1 \) for all values of \( x \) greater than zero. For \( x \leq 0 \), the function follows the linear equation \( x + 1 \). At \( x = 0 \), the output is \( 1 \), which corresponds to the point \( (0, 1) \). As \( x \) decreases, the line will slope downward, crossing the y-axis at \( (0, 1) \) and continuing downward to the left. Now, make sure to include an open circle at \( (0, 1) \) on the right side since the piece \( y = 1 \) does not include the value at \( x = 0 \) when approaching from the right. The left side with \( y = x + 1 \) will include the point \( (0, 1) \) as a closed dot indicating that this part of the function encompasses the value at \( x = 0 \). Add arrows on both ends of your lines to indicate that they continue infinitely in both directions.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad