Pregunta
upstudy study bank question image url

QUESTION 1 1.1 For which of the value of \( x \) : \[ x \in\{-11 ;-5 ; 0 ; 15\} \text { is } \sqrt{\frac{9}{11-x}} \] (2) 1.1.1 a rational number 1.1.2 an irrational number 1.1.3 not defined (2) 1.2 Which of the following expressions will always be a natural number if \( a \) and \( t \) natural number . Give reasons for those that are not natural numbers. 1.2.1 \( \mathrm{a}+\mathrm{b} \) (1) \( 1.2 .2 \mathrm{a}-\mathrm{b} \) (2) 1.2 .3 ab (1) 1.2.4 \( \frac{a}{b} \) 1.3 Without the use a calculator and showing all working , determine between which two Integers \( \sqrt{39} \) lies.

Ask by Cook Ross. in South Africa
Jan 29,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**1.1 Evaluations:** - **x = -5:** Rational number (\(\frac{3}{4}\)) - **x = -11 and x = 0:** Irrational numbers - **x = 15:** Not defined **1.2 Expressions Always Natural Numbers:** - **a + b** - **ab** **1.3 \(\sqrt{39}\) Lies Between:** - 6 and 7

Solución

Let's address each part of **Question 1** systematically. --- ### **1.1 Evaluate \(\sqrt{\frac{9}{11 - x}}\) for \(x \in \{-11, -5, 0, 15\}\)** **Definitions:** - **Rational Number:** A number that can be expressed as the quotient of two integers. - **Irrational Number:** A number that cannot be expressed as a simple fraction; its decimal form is non-repeating and non-terminating. - **Not Defined:** The expression is invalid (e.g., division by zero or square root of a negative number). Let's evaluate the expression for each value of \(x\): 1. **For \(x = -11\):** \[ \sqrt{\frac{9}{11 - (-11)}} = \sqrt{\frac{9}{22}} = \sqrt{\frac{9}{22}} = \frac{3}{\sqrt{22}} \] - \(\sqrt{22}\) is irrational, making \(\frac{3}{\sqrt{22}}\) irrational. 2. **For \(x = -5\):** \[ \sqrt{\frac{9}{11 - (-5)}} = \sqrt{\frac{9}{16}} = \frac{3}{4} \] - \(\frac{3}{4}\) is a **rational number**. 3. **For \(x = 0\):** \[ \sqrt{\frac{9}{11 - 0}} = \sqrt{\frac{9}{11}} = \frac{3}{\sqrt{11}} \] - \(\sqrt{11}\) is irrational, making \(\frac{3}{\sqrt{11}}\) irrational. 4. **For \(x = 15\):** \[ \sqrt{\frac{9}{11 - 15}} = \sqrt{\frac{9}{-4}} = \sqrt{-2.25} \] - The square root of a negative number is **not defined** in the set of real numbers. **Summary:** - **1.1.1 Rational Number:** \(x = -5\) - **1.1.2 Irrational Number:** \(x = -11, 0\) - **1.1.3 Not Defined:** \(x = 15\) --- ### **1.2 Determine Which Expressions Always Yield a Natural Number** **Definitions:** - **Natural Numbers:** Positive integers starting from 1 (i.e., 1, 2, 3, ...). Given \(a\) and \(b\) are natural numbers, evaluate each expression: 1. **1.2.1 \(a + b\):** - **Always Natural:** The sum of two natural numbers is always a natural number. 2. **1.2.2 \(a - b\):** - **Not Always Natural:** If \(a < b\), the result is negative, which is not a natural number. Only when \(a \geq b\) is the result natural. 3. **1.2.3 \(a \times b\):** - **Always Natural:** The product of two natural numbers is always a natural number. 4. **1.2.4 \(\frac{a}{b}\):** - **Not Always Natural:** The division of two natural numbers does not always result in a natural number unless \(b\) divides \(a\) exactly. **Summary:** - **Always Natural Numbers:** - **1.2.1 \(a + b\)** - **1.2.3 \(ab\)** - **Not Always Natural Numbers:** - **1.2.2 \(a - b\)** (Because \(a\) might be less than \(b\)) - **1.2.4 \(\frac{a}{b}\)** (Because \(a\) might not be divisible by \(b\)) --- ### **1.3 Determine Between Which Two Integers \(\sqrt{39}\) Lies** To find between which two integers \(\sqrt{39}\) lies, identify two consecutive integers \(n\) and \(n+1\) such that: \[ n^2 < 39 < (n+1)^2 \] 1. **Testing \(n = 6\):** \[ 6^2 = 36 < 39 \] 2. **Testing \(n = 7\):** \[ 7^2 = 49 > 39 \] Since \(36 < 39 < 49\), it follows that: \[ 6 < \sqrt{39} < 7 \] **Conclusion:** \(\sqrt{39}\) lies **between 6 and 7**. ---

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine the value of \( x \) for which \( \sqrt{\frac{9}{11-x}} \) is a rational number, we need to ensure that \( 11-x \) is a positive perfect square. Among the options given, when \( x = -11 \) or \( x = 0 \), \( 11-x \) gives us \( 22 \) and \( 11 \), respectively, which don't yield a rational square root. Meanwhile, for \( x = 15 \), \( 11 - 15 = -4 \), which makes the expression not defined. Only \( x = -5 \) gives \( 11 - (-5) = 16 \), a perfect square yielding a rational number of \( \sqrt{\frac{9}{16}} = \frac{3}{4} \). As for the expressions involving natural numbers \( a \) and \( b \): 1. \( a + b \) will always be a natural number since the sum of two natural numbers is always a natural number. 2. \( a - b \) may not be a natural number if \( a < b \) because we could end up with a negative result, which is not natural. 3. The product \( ab \) of two natural numbers will always be a natural number. 4. The expression \( \frac{a}{b} \) will only yield a natural number if \( b \) divides \( a \) evenly. If \( a < b \), it results in a fraction, thus not being a natural number. To find between which two integers \( \sqrt{39} \) lies, we first find the perfect squares close to \( 39 \). Since \( 6^2 = 36 \) and \( 7^2 = 49 \), we know that \( \sqrt{39} \) must fall between \( 6 \) and \( 7 \). Therefore, \( 6 < \sqrt{39} < 7 \) is our final answer!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad